42 research outputs found

    Genotyping and Phylogenetic Analysis of Yersinia pestis by MLVA: Insights into the Worldwide Expansion of Central Asia Plague Foci

    Get PDF
    BACKGROUND: The species Yersinia pestis is commonly divided into three classical biovars, Antiqua, Medievalis, and Orientalis, belonging to subspecies pestis pathogenic for human and the (atypical) non-human pathogenic biovar Microtus (alias Pestoides) including several non-pestis subspecies. Recent progress in molecular typing methods enables large-scale investigations in the population structure of this species. It is now possible to test hypotheses about its evolution which were proposed decades ago. For instance the three classical biovars of different geographical distributions were suggested to originate from Central Asia. Most investigations so far have focused on the typical pestis subspecies representatives found outside of China, whereas the understanding of the emergence of this human pathogen requires the investigation of strains belonging to subspecies pestis from China and to the Microtus biovar. METHODOLOGY/PRINCIPAL FINDINGS: Multi-locus VNTR analysis (MLVA) with 25 loci was performed on a collection of Y. pestis isolates originating from the majority of the known foci worldwide and including typical rhamnose-negative subspecies pestis as well as rhamnose-positive subspecies pestis and biovar Microtus. More than 500 isolates from China, the Former Soviet Union (FSU), Mongolia and a number of other foci around the world were characterized and resolved into 350 different genotypes. The data revealed very close relationships existing between some isolates from widely separated foci as well as very high diversity which can conversely be observed between nearby foci. CONCLUSIONS/SIGNIFICANCE: The results obtained are in full agreement with the view that the Y. pestis subsp. pestis pathogenic for humans emerged in the Central Asia region between China, Kazakhstan, Russia and Mongolia, only three clones of which spread out of Central Asia. The relationships among the strains in China, Central Asia and the rest of the world based on the MLVA25 assay provide an unprecedented view on the expansion and microevolution of Y. pestis

    Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection

    Get PDF
    Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y pseudotuberculosis evolved to such a remarkably virulent pathogen, Y pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y pestis infection. A distinguishing characteristic between the two Yersinia species is that Y pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y pseudotuberculosis into Y pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.Peer reviewe

    Insight into Microevolution of Yersinia pestis by Clustered Regularly Interspaced Short Palindromic Repeats

    Get PDF
    BACKGROUND: Yersinia pestis, the pathogen of plague, has greatly influenced human history on a global scale. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), an element participating in immunity against phages' invasion, is composed of short repeated sequences separated by unique spacers and provides the basis of the spoligotyping technology. In the present research, three CRISPR loci were analyzed in 125 strains of Y. pestis from 26 natural plague foci of China, the former Soviet Union and Mongolia were analyzed, for validating CRISPR-based genotyping method and better understanding adaptive microevolution of Y. pestis. METHODOLOGY/PRINCIPAL FINDINGS: Using PCR amplification, sequencing and online data processing, a high degree of genetic diversity was revealed in all three CRISPR elements. The distribution of spacers and their arrays in Y. pestis strains is strongly region and focus-specific, allowing the construction of a hypothetic evolutionary model of Y. pestis. This model suggests transmission route of microtus strains that encircled Takla Makan Desert and ZhunGer Basin. Starting from Tadjikistan, one branch passed through the Kunlun Mountains, and moved to the Qinghai-Tibet Plateau. Another branch went north via the Pamirs Plateau, the Tianshan Mountains, the Altai Mountains and the Inner Mongolian Plateau. Other Y. pestis lineages might be originated from certain areas along those routes. CONCLUSIONS/SIGNIFICANCE: CRISPR can provide important information for genotyping and evolutionary research of bacteria, which will help to trace the source of outbreaks. The resulting data will make possible the development of very low cost and high-resolution assays for the systematic typing of any new isolate

    \u3cem\u3e Yersinia\u3c/em\u3e Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting Against Plague

    No full text
    Despite the relatively low incidence of plague, its etiological agent, Yersinia pestis, is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant Y. pestis strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates. Therefore, developing alternative vaccines is of high priority and importance. However, until now, work on the development of plague vaccines has mainly focused on screening for the potential immunogens. Several investigators have identified the protective potency of bacterial outer membrane vesicles (OMVs) as a promising basis for bacterial vaccine candidates. This review is aimed at presenting these candidates of plague vaccine and the results of their analysis in animal models

    Yersinia Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting against Plague

    No full text
    Despite the relatively low incidence of plague, its etiological agent, Yersinia pestis, is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant Y. pestis strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates. Therefore, developing alternative vaccines is of high priority and importance. However, until now, work on the development of plague vaccines has mainly focused on screening for the potential immunogens. Several investigators have identified the protective potency of bacterial outer membrane vesicles (OMVs) as a promising basis for bacterial vaccine candidates. This review is aimed at presenting these candidates of plague vaccine and the results of their analysis in animal models

    Effect of Natural Polymorphism on Structure and Function of the Yersinia Pestis Outer Membrane Porin F (OmpF Protein): a Computational Study

    No full text
    The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced. Comparison of these amino acid sequences revealed that the OmpF can be present in four isoforms, the pestis-pestis type, and the pestis-microtus types I, II, and III. OmpF of the most recent pestis-pestis type has an alanine residue at the position 148, where all the pestis-microtus types have threonine there (T148A polymorphism). The variability of different pestis-microtus types is caused by an additional polymorphism at the 193rd position, where the OmpFs of the pestis-microtus type II and type III have isoleucine-glycine (IG+193) or isoleucine-glycine-isoleucine-glycine (IGIG+193) insertions, respectively (IG+193 and IGIG+193 polymorphism). To investigate potential effects of these sequence polymorphisms on the structural properties of the OmpF protein, we conducted multi-level computational analysis of its isoforms. Analysis of the I-TASSER-generated 3D-models revealed that the Yersinia OmpF is very similar to other non-specific enterobacterial porins. The T148A polymorphism affected a loop located in the external vestibule of the OmpF channel, whereas IG+193 and IGIG+193 polymorphisms affected one of its β-strands. Our analysis also suggested that polymorphism has moderate effect on the predicted local intrinsic disorder predisposition of OmpF, but might have some functional implementations

    Effect of natural polymorphism on structure and function of the Yersinia pestis

    No full text
    The Yersinia pestis outer membrane porin F (OmpF) is a transmembrane protein located in the outer membrane of this Gram-negative bacterium which is the causative agent of plague, where it plays a significant role in controlling the selective permeability of the membrane. The amino acid sequences of OmpF proteins from 48 Y. pestis strains representing all currently available phylogenetic groups of this Gram-negative bacterium were recently deduced. Comparison of these amino acid sequences revealed that the OmpF can be present in four isoforms, the pestis-pestis type, and the pestis-microtus types I, II, and III. OmpF of the most recent pestis-pestis type has an alanine residue at the position 148, where all the pestis-microtus types have threonine there (T148A polymorphism). The variability of different pestis-microtus types is caused by an additional polymorphism at the 193rd position, where the OmpFs of the pestis-microtus type II and type III have isoleucine-glycine (IG+193) or isoleucine-glycine-isoleucine-glycine (IGIG+193) insertions, respectively (IG+193 and IGIG+193 polymorphism). To investigate potential effects of these sequence polymorphisms on the structural properties of the OmpF protein, we conducted multi-level computational analysis of its isoforms. Analysis of the I-TASSER-generated 3D-models revealed that the Yersinia OmpF is very similar to other non-specific enterobacterial porins. The T148A polymorphism affected a loop located in the external vestibule of the OmpF channel, whereas IG+193 and IGIG+193 polymorphisms affected one of its β-strands. Our analysis also suggested that polymorphism has moderate effect on the predicted local intrinsic disorder predisposition of OmpF, but might have some functional implementations

    Polymorphism of the Cysteine Protease YopT from Yersinia Pestis

    No full text
    Antibiotic therapy of plague is hampered by the recent isolation of Yersinia pestis strain resistant to all of antibiotics recommended for cure. This has constrained a quest for new antimicrobials taking aim at alternative targets. Recently Y. pestis cysteine protease YopT has been explored as a potential drug target. Targets conserved in the pathogen populations should be more efficacious; therefore, we evaluated intraspecies variability in yopT genes and their products. 114 Y. pestis isolates were screened. Only two YopT full-size isoforms were found among them. The endemic allele (N149) was present in biovar caucasica from Dagestan-highland natural plague focus # 39. The biovar caucasica strains from Transcaucasian highland (# 4-6) and Pre-Araks (# 7) plague foci also contained the N149 allele. These strains from foci # 4 7 possessed a truncated version of YopT that was a consequence of a frame-shift due to the deletion of a single nucleotide at position 71 bp. Computational analyses showed that although the SNP at the position 149 has a very minimal effect of the intrinsic disorder propensity of YopT proteins, whereas the N-terminal truncations of the YopT detected in bv. caucasica strains Pestoides F_YopT1 and F_YopT2, and Pestoides G generated isoforms with the significantly modified intrinsic disorder propensities and with reduced capability to interact with lost ability to utilize their N-terminal tail for the disorder-based interactions with biological partners. Considering that representatives of biovar caucasica were reported to be the reason of sporadic cases of human plague, this study supports the necessity of additional testing of globally disseminated YopT (S149) isoform as a potential target for treatment of plague caused by the strains producing different YopT isoforms
    corecore