8 research outputs found

    Development to metamorphosis of the nemertean pilidium larva

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nemertean pilidium is one of the most notable planktotrophic larval types among marine invertebrates. The juvenile forms inside the larva from a series of isolated rudiments, called the imaginal discs. The development culminates in catastrophic metamorphosis, in which the larval body is consumed by the juvenile worm. Although the pilidium was first described in 1847, and is commonly found among marine plankton, there is not a single complete description of its development. The few published studies of pilidial development are based on observations of typically unidentified larvae opportunistically collected from plankton at various developmental stages.</p> <p>Results</p> <p>The development of <it>Micrura alaskensis</it>, a common Northwest Pacific coast intertidal nemertean, is described from fertilization to metamorphosis. A staging scheme is proposed based on characteristic developmental milestones. Three pairs of imaginal discs develop as invaginations of larval epidermis. The cephalic discs invaginate from the larval epidermis above the ciliated band, while the cerebral organ discs and the trunk discs invaginate below the ciliated band. All paired imaginal disc invaginations are closely associated with different portions of the larval ciliated band. In addition, two unpaired rudiments contribute to the juvenile - the proboscis rudiment and the dorsal rudiment, which do not develop as invaginations. A pair of thick-walled esophageal pouches previously thought to represent nephridial rudiments give rise to the juvenile foregut. Branched rudiments of protonephridia, and their efferent ducts are also described. Larval and juvenile serotonergic nervous systems are briefly described. Development of the juvenile is completed by 5-8 weeks at 11-15 degrees C. During the rapid metamorphosis the juvenile emerges from and devours the larva.</p> <p>Conclusions</p> <p>This study is the first description of pilidial development from fertilization to metamorphosis in a single species. It is illustrated with photomicrographs of live larvae, diagrams, confocal images, and videos. The findings are discussed in the context of previously published accounts of pilidial development, with which they disagree on several accounts. The results described here indicate a different number, origin and fate of various juvenile rudiments. The proposed staging scheme will be useful in subsequent studies of pilidial development.</p

    Statistical Parsimony Networks and Species Assemblages in Cephalotrichid Nemerteans (Nemertea)

    Get PDF
    BACKGROUND: It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. METHODOLOGY/PRINCIPAL FINDINGS: Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. CONCLUSIONS/SIGNIFICANCE: Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling

    The trochoblasts in the pilidium larva break an ancient spiralian constraint to enable continuous larval growth and maximally indirect development

    No full text
    Abstract Background Nemertean embryos undergo equal spiral cleavage, and prior fate-mapping studies showed that some also exhibit key aspects of spiralian lineage-based fate specification, including specification of the primary trochoblasts, which differentiate early as the core of the prototroch of the spiralian trochophore larva. Yet it remains unclear how the nemertean pilidium larva, a long-lived planktotroph that grows substantially as it builds a juvenile body from isolated rudiments, develops within the constraints of spiral cleavage. Results We marked single cells in embryos of the pilidiophoran Maculaura alaskensis to show that primary, secondary, and accessory trochoblasts, cells that would make the prototroch in conventional spiralian trochophores (1q2, 1q12, and some descendants of 2q), fully account for the pilidium’s primary ciliary band, but without undergoing early cleavage arrest. Instead, the primary ciliary band consists of many small, albeit terminally differentiated, cells. The trochoblasts also give rise to niches of indefinitely proliferative cells (“axils”) that sustain continuous growth of the larval body, including new ciliated band. Several of the imaginal rudiments that form the juvenile body arise from the axils: in particular, we show that cephalic imaginal disks originate from 1a2 and 1b12 and that trunk imaginal disks likely originate from 2d. Conclusions The pilidium exhibits a familiar relation between identified blastomeres and the primary ciliated band, but the manner in which these cells form this organ differs fundamentally from the way equivalent cells construct the trochophore’s prototroch. Also, the establishment, by some progeny of the putative trochoblasts, of indeterminate stem cell populations that give rise to juvenile rudiments, as opposed to an early cleavage arrest, implies a radical alteration in their developmental program. This transition may have been essential to the evolution of a maximally indirect developing larval form—the pilidium—among nemerteans
    corecore