2 research outputs found

    Study on Cytotoxic and Genotoxic Potential of Bulgarian <i>Rosa damascena</i> Mill. and <i>Rosa alba</i> L. Hydrosols—<i>In Vivo</i> and <i>In Vitro</i>

    No full text
    The Rosa alba L. and Rosa damascena Mill. growing in Bulgaria are known for their extremely fine essential oil and valuable hydrosols. Irrespectively of its wide use in human life, little research exists on the cytotoxic and genotoxic activity of the hydrosols. This set our goal to conduct cytogenetic analyses to study these effects. A complex of classical cytogenetic methods was applied in three types of experimental test systems—higher plant in vivo, ICR mice in vivo, and human lymphocytes in vitro. Mitotic index, PCE/(PCE + NCE) ratio, and nuclear division index were used as endpoints for cytotoxicity and for genotoxicity—induction of chromosome aberrations and micronuclei. Rose hydrosol treatments range in concentrations from 6% to 20%. It was obtained that both hydrosols did not show considerable cytotoxic and genotoxic effects. These effects depend on the type of the tested rose hydrosols, the concentrations applied in the experiments, and the sensitivity and specificity of the test systems used. Human lymphocytes in vitro were the most sensitive to hydrosols, followed by higher plant and animal cells. Chromosomal aberrations and micronucleus assays suggested that R. damascena and R. alba hydrosols at applied concentrations possess low genotoxic risk. Due to the overall low values in terms of cytotoxic and/or genotoxic effects in all test systems, hydrosols are promising for further use in various areas of human life

    Rose Flowers—A Delicate Perfume or a Natural Healer?

    No full text
    Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called “old roses” that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties—as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants—are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases
    corecore