130 research outputs found

    Slow magnetoacoustic waves in coronal loops : EIT and TRACE

    Get PDF
    On May 13, 1998 the EIT (Extreme ultraviolet Imaging Telescope) on board of SoHO (Solar and Heliospheric Observatory) and TRACE (Transition Region And Coronal Explorer) instruments produced simultaneous high cadence image sequences of the same active region (AR 8218). TRACE achieved a 25 s cadence in the FeIX (171 Å) bandpass while EIT achieved a 15 s cadence (operating in "shutterless mode", SoHO JOP 80) in the FeXII (195 Å) bandpass. These high cadence observations in two complementary wavelengths have revealed the existence of weak transient disturbances in an extended coronal loop system. These propagating disturbances (PDs) seem to be a common phenomenon in this part of the active region. The disturbances originate from small scale brightenings at the footpoints of the loops and propagate along the loops. The projected propagation speeds roughly vary between 65 and 150 km s-1 for both instruments which is close to and below the expected sound speed in the coronal loops. The measured slow magnetoacoustic propagation speeds seem to suggest that the transients are sound (or slow) wave disturbances. This work differs from previous studies in the sense that it is based on a multi-wavelength observation of an entire loop bundle at high cadence by two EUV imagers. The observation of sound waves along the same path shows that they propagate along the same loop, suggesting that loops contain sharp temperature gradients and consist of either concentric shells or thin loop threads, at different temperatures

    k-Color Multi-Robot Motion Planning

    Full text link
    We present a simple and natural extension of the multi-robot motion planning problem where the robots are partitioned into groups (colors), such that in each group the robots are interchangeable. Every robot is no longer required to move to a specific target, but rather to some target placement that is assigned to its group. We call this problem k-color multi-robot motion planning and provide a sampling-based algorithm specifically designed for solving it. At the heart of the algorithm is a novel technique where the k-color problem is reduced to several discrete multi-robot motion planning problems. These reductions amplify basic samples into massive collections of free placements and paths for the robots. We demonstrate the performance of the algorithm by an implementation for the case of disc robots and polygonal robots translating in the plane. We show that the algorithm successfully and efficiently copes with a variety of challenging scenarios, involving many robots, while a simplified version of this algorithm, that can be viewed as an extension of a prevalent sampling-based algorithm for the k-color case, fails even on simple scenarios. Interestingly, our algorithm outperforms a well established implementation of PRM for the standard multi-robot problem, in which each robot has a distinct color.Comment: 2

    Fe XIII coronal line emission in cool M dwarfs

    Full text link
    We report on a search for the Fe xiii forbidden coronal line at 3388.1 \AA in a sample of 15 M-type dwarf stars covering the whole spectral class as well as different levels of activity. A clear detection was achieved for LHS 2076 during a major flare and for CN Leo, where the line had been discovered before. For some other stars the situation is not quite clear. For CN Leo we investigated the timing behaviour of the Fe xiii line and report a high level of variability on a timescale of hours which we ascribe to microflare heating.Comment: 13 pages, 10 figure

    Dust in the Local Interstellar Wind

    Get PDF
    The gas-to-dust mass ratios found for interstellar dust within the Solar System, versus values determined astronomically for the cloud around the Solar System, suggest that large and small interstellar grains have separate histories, and that large interstellar grains preferentially detected by spacecraft are not formed exclusively by mass exchange with nearby interstellar gas. Observations by the Ulysses and Galileo satellites of the mass spectrum and flux rate of interstellar dust within the heliosphere are combined with information about the density, composition, and relative flow speed and direction of interstellar gas in the cloud surrounding the solar system to derive an in situ value for the gas-to-dust mass ratio, Rg/d=9438+46R_{g/d} = 94^{+46}_{-38}. Hubble observations of the cloud surrounding the solar system yield a gas-to-dust mass ratio of Rg/d=551+61-251 when B-star reference abundances are assumed. The exclusion of small dust grains from the heliosheath and heliosphere regions are modeled, increasing the discrepancy between interstellar and in situ observations. The shock destruction of interstellar grains is considered, and comparisons are made with interplanetary and presolar dust grains.Comment: 87 pages, 9 figures, 6 tables, accepted for publication in Astrophysical Journal. Uses AASTe

    The Influence of Solar Flares on the Lower Solar Atmosphere: Evidence from the Na D Absorption Line Measured by GOLF/SOHO

    Full text link
    Solar flares presumably have an impact on the deepest layers of the solar atmosphere and yet the observational evidence for such an impact is scarce. Using ten years of measurements of the Na D1_{1} and Na D2_2 Fraunhofer lines, measured by GOLF onboard SOHO, we show that this photospheric line is indeed affected by flares. The effect of individual flares is hidden by solar oscillations, but a statistical analysis based on conditional averaging reveals a clear signature. Although GOLF can only probe one single wavelength at a time, we show that both wings of the Na line can nevertheless be compared. The varying line asymmetry can be interpreted as an upward plasma motion from the lower solar atmosphere during the peak of the flare, followed by a downward motion.Comment: 13 pages, 7 figure

    k-Color Multi-robot Motion Planning

    Full text link

    Morphology and density of post-CME current sheets

    Full text link
    Eruption of a coronal mass ejection (CME) drags and "opens" the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and the field relaxation by magnetic reconnection. We analyze physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to check if the interpretation of this phenomenon in terms of reconnecting current sheet is consistent with the observations. The study is focused on measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of rays indicates that they occur as a consequence of Petschek-like reconnection in the large scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km s1^{-1}, consistent with the narrow opening-angle of rays, adding up to a few degrees. The density of rays is an order of magnitude larger than in the ambient corona. The density-excess measurements are compared with the results of the analytical model in which the Petschek-like reconnection geometry is applied to the vertical current sheet, taking into account the decrease of the external coronal density and magnetic field with height. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to larger heights by the reconnection outflow

    Review of Coronal Oscillations - An Observer's View

    Full text link
    Recent observations show a variety of oscillation modes in the corona. Early non-imaging observations in radio wavelengths showed a number of fast-period oscillations in the order of seconds, which have been interpreted as fast sausage mode oscillations. TRACE observations from 1998 have for the first time revealed the lateral displacements of fast kink mode oscillations, with periods of ~3-5 minutes, apparently triggered by nearby flares and destabilizing filaments. Recently, SUMER discovered with Doppler shift measurements loop oscillations with longer periods (10-30 minutes) and relatively short damping times in hot (7 MK) loops, which seem to correspond to longitudinal slow magnetoacoustic waves. In addition, propagating longitudinal waves have also been detected with EIT and TRACE in the lowest density scale height of loops near sunspots. All these new observations seem to confirm the theoretically predicted oscillation modes and can now be used as a powerful tool for ``coronal seismology'' diagnostic.Comment: 5 Figure

    Global Properties of Solar Flares

    Full text link
    corecore