6,928 research outputs found

    Adaptive Multicell 3D Beamforming in Multi-Antenna Cellular Networks

    Full text link
    We consider a cellular network with multi-antenna base stations (BSs) and single-antenna users, multicell cooperation, imperfect channel state information, and directional antennas each with a vertically adjustable beam. We investigate the impact of the elevation angle of the BS antenna pattern, denoted as tilt, on the performance of the considered network when employing either a conventional single-cell transmission or a fully cooperative multicell transmission. Using the results of this investigation, we propose a novel hybrid multicell cooperation technique in which the intercell interference is controlled via either cooperative beamforming in the horizontal plane or coordinated beamfroming in the vertical plane of the wireless channel, denoted as adaptive multicell 3D beamforming. The main idea is to divide the coverage area into two disjoint vertical regions and adapt the multicell cooperation strategy at the BSs when serving each region. A fair scheduler is used to share the time-slots between the vertical regions. It is shown that the proposed technique can achieve performance comparable to that of a fully cooperative transmission but with a significantly lower complexity and signaling requirements. To make the performance analysis computationally efficient, analytical expressions for the user ergodic rates under different beamforming strategies are also derived.Comment: Accepted for publication in IEEE Transaction on Vehicular Technolog

    Hardness of Graph Pricing through Generalized Max-Dicut

    Full text link
    The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ϵ>0\epsilon > 0, there exists δ>0\delta > 0 such that the integrality gap of nδn^{\delta}-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/2 + ϵ\epsilon. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(TT), which has a domain size T+1T + 1 for every T≥1T \geq 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation-preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page

    Group Member Prototypicality and Intergroup Negotiation: How One's Standing in the Group Affects Negotiation Behaviour

    Get PDF
    How does a representative's position in the group influence behaviour in intergroup negotiation? Applying insights from the social identity approach (specifically self-categorization theory), the effects of group member prototypicality, accountability, and group attractiveness on competitiveness in intergroup bargaining were examined. As representatives of their group, participants engaged in a computer-mediated negotiation with a simulated outgroup opponent. In Exp. 1 (N = 114), representatives with a peripheral status in the group sent more competitive and fewer cooperative messages to the opponent than did prototypical representatives, but only under accountability. Exp. 2 (N = 110) replicated this finding, and showed that, under accountability, peripherals also made higher demands than did prototypicals, but only when group membership was perceived as attractive. Results are discussed in relation to impression management and strategic behaviour.Group Member Prototypicality;Intergroup Negotiation;Negotiation Behaviour;Representatives Bahaviour

    Quasi-thermal Comptonization and gamma-ray bursts

    Get PDF
    Quasi-thermal Comptonization in internal shocks formed between relativistic shells can account for the high energy emission of gamma-ray bursts. This is in fact the dominant cooling mechanism if the typical energy of the emitting particles is achieved either through the balance between heating and cooling or as a result of electron-positron pair production. Both processes yield sub or mildly relativistic energies. In this case the synchrotron spectrum is self-absorbed, providing the seed soft photons for the Comptonization process, whose spectrum is flat [F(v) ~ const], ending either in an exponential cutoff or a Wien peak, depending on the scattering optical depth of the emitting particles. Self-consistent particle energy and optical depth are estimated and found in agreement with the observed spectra.Comment: 10 pages, ApJ Letters, accepted for publicatio

    Money in monetary policy design: monetary cross-checking in the New-Keynesian model

    Get PDF
    In the New-Keynesian model, optimal interest rate policy under uncertainty is formulated without reference to monetary aggregates as long as certain standard assumptions on the distributions of unobservables are satisfied. The model has been criticized for failing to explain common trends in money growth and inflation, and that therefore money should be used as a cross-check in policy formulation (see Lucas (2007)). We show that the New-Keynesian model can explain such trends if one allows for the possibility of persistent central bank misperceptions. Such misperceptions motivate the search for policies that include additional robustness checks. In earlier work, we proposed an interest rate rule that is near-optimal in normal times but includes a cross-check with monetary information. In case of unusual monetary trends, interest rates are adjusted. In this paper, we show in detail how to derive the appropriate magnitude of the interest rate adjustment following a significant cross-check with monetary information, when the New-Keynesian model is the central bank’s preferred model. The cross-check is shown to be effective in offsetting persistent deviations of inflation due to central bank misperceptions. Keywords: Monetary Policy, New-Keynesian Model, Money, Quantity Theory, European Central Bank, Policy Under Uncertaint

    Ultraluminous X-ray Sources Powered by Radiatively Efficient Two-Phased Super-Eddington Accretion onto Stellar Mass Black holes

    Full text link
    The radiation spectra of many of the brightest ultraluminous X-ray sources (ULXs) are dominated by a hard power law component, likely powered by a hot, optically thin corona that Comptonizes soft seed photons emitted from a cool, optically thick black hole accretion disk. Before its dissipation and subsequent conversion into coronal photon power, the randomized gravitational binding energy responsible for powering ULX phenomena must separate from the mass of its origin by a means other than, and quicker than, electron scattering-mediated radiative diffusion. Therefore, the release of accretion power in ULXs is not necessarily subject to Eddington-limited photon trapping, as long as it occurs in a corona. Motivated by these basic considerations, we present a model of ULXs powered by geometrically thin accretion onto stellar mass black holes. We argue that the radiative efficiency of the flow remains high if the corona is magnetized or optically thin and the majority of the accretion power escapes in the form of radiation rather than an outflow. Within the context of the current black hole X-ray binary paradigm, our ULX model may be viewed as an extension of the very high state observed in Galactic sources. (abridged)Comment: 11 page

    A comparative study of super- and highly-deformed bands in the A ~ 60 mass region

    Full text link
    Super- and highly-deformed rotational bands in the A ~ 60 mass region are studied within cranked relativistic mean field theory and the configuration-dependent shell-correction approach based on the cranked Nilsson potential. Both approaches describe the experimental data well. Low values of the dynamic moments of inertia J^(2) compared with the kinematic moments of inertia J^(1) seen both in experiment and in calculations at high rotational frequencies indicate the high energy cost to build the states at high spin and reflect the limited angular momentum content in these configurations.Comment: 11 pages, 4 PostScript figures, Latex, uses 'epsf', submitted to Phys. Lett.

    Period multiplication in a parametrically driven superconducting resonator

    Get PDF
    We report on the experimental observation of period multiplication in parametrically driven tunable superconducting resonators. We modulate the magnetic flux through a superconducting quantum interference device, attached to a quarter-wavelength resonator, with frequencies nωn\omega close to multiples, n=2, 3, 4, 5n=2,\,3,\,4,\,5, of the resonator fundamental mode and observe intense output radiation at ω\omega. The output field manifests nn-fold degeneracy with respect to the phase, the nn states are phase shifted by 2π/n2\pi/n with respect to each other. Our demonstration verifies the theoretical prediction by Guo et al. in PRL 111, 205303 (2013), and paves the way for engineering complex macroscopic quantum cat states with microwave photons

    Phonons in random alloys: the itinerant coherent-potential approximation

    Full text link
    We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni_{55} Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation(CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
    • …
    corecore