6,608 research outputs found
Organic production systems in Northern highbush blueberries
The production of highbush blueberries is increasing worldwide. Organic production of blueberries in Sweden is presently very limited but is expected to have a great potential to expand as the berries are popular and have a good shelf life. The fact that blueberries require acid soils raises several questions concerning suitable substrates in combination with mycorrhizal inoculation and fertilization in organic production systems. Field and pot experiments have been established during 2011 and 2012 with the aim of developing a sustainable production system for high quality organic blueberries. After the second experimental year, total fruit yields were similar for plants grown in a plastic tunnel and in the open field. Yields were not affected by the addition of 10% forest soil to the peat-based substrate. Inoculation with ericoid mycorrhizal fungi had little effect on shoot length in a greenhouse pot experiment. Blueberries may be particularly suitable for organic production as the need for fertilizers is low combined with a relatively low disease pressure on the blueberry crop in the Nordic countries. The Swedish blueberry production might be expected to expand in the near future. The development of a successful and resource-efficient growing system for organic blueberries may encourage new blueberry growers to chose organic production
Phonons in random alloys: the itinerant coherent-potential approximation
We present the itinerant coherent-potential approximation(ICPA), an analytic,
translationally invariant and tractable form of augmented-space-based,
multiple-scattering theory in a single-site approximation for harmonic phonons
in realistic random binary alloys with mass and force-constant disorder.
We provide expressions for quantities needed for comparison with experimental
structure factors such as partial and average spectral functions and derive the
sum rules associated with them. Numerical results are presented for Ni_{55}
Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for
weak force-constant disorder and the latter for strong. We present results on
dispersion curves and disorder-induced widths. Direct comparisons with the
single-site coherent potential approximation(CPA) and experiment are made which
provide insight into the physics of force-constant changes in random alloys.
The CPA accounts well for the weak force-constant disorder case but fails for
strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
Towards a first principles description of phonons in NiPt disordered alloys: the role of relaxation
Using a combination of density-functional perturbation theory and the
itinerant coherent potential approximation, we study the effects of atomic
relaxation on the inelastic incoherent neutron scattering cross sections of
disordered NiPt alloys. We build on previous work, where
empirical force constants were adjusted {\it ad hoc} to agree with experiment.
After first relaxing all structural parameters within the local-density
approximation for ordered NiPt compounds, density-functional perturbation
theory is then used to compute phonon spectra, densities of states, and the
force constants. The resulting nearest-neighbor force constants are first
compared to those of other ordered structures of different stoichiometry, and
then used to generate the inelastic scattering cross sections within the
itinerant coherent potential approximation. We find that structural relaxation
substantially affects the computed force constants and resulting inelastic
cross sections, and that the effect is much more pronounced in random alloys
than in ordered alloys.Comment: 8 pages, 3 eps figures, uses revtex
Lattice diffusion and surface segregation of B during growth of SiGe heterostructures by molecular beam epitaxy: effect of Ge concentration and biaxial stress
Si1-xGex/Si1-yGey/Si(100) heterostructures grown by Molecular Beam Epitaxy
(MBE) were used in order to study B surface segregation during growth and B
lattice diffusion. Ge concentration and stress effects were separated. Analysis
of B segregation during growth shows that: i) for layers in epitaxy on
(100)Si), B segregation decreases with increasing Ge concentration, i.e. with
increased compressive stress, ii) for unstressed layers, B segregation
increases with Ge concentration, iii) at constant Ge concentration, B
segregation increases for layers in tension and decreases for layers in
compression. The contrasting behaviors observed as a function of Ge
concentration in compressively stressed and unstressed layers can be explained
by an increase of the equilibrium segregation driving force induced by Ge
additions and an increase of near-surface diffusion in compressively stressed
layers. Analysis of lattice diffusion shows that: i) in unstressed layers, B
lattice diffusion coefficient decreases with increasing Ge concentration, ii)
at constant Ge concentration, the diffusion coefficient of B decreases with
compressive biaxial stress and increases with tensile biaxial stress, iii) the
volume of activation of B diffusion () is positive for biaxial stress while it
is negative in the case of hydrostatic pressure. This confirms that under a
biaxial stress the activation volume is reduced to the relaxation volume
Coulomb correlation effects in zinc monochalcogenides
Electronic structure and band characteristics for zinc monochalcogenides with
zinc-blende- and wurtzite-type structures are studied by first-principles
density-functional-theory calculations with different approximations. It is
shown that the local-density approximation underestimates the band gap and
energy splitting between the states at the top of the valence band, misplaces
the energy levels of the Zn-3d states, and overestimates the
crystal-field-splitting energy. Regardless of the structure type considered,
the spin-orbit-coupling energy is found to be overestimated for ZnO and
underestimated for ZnS with wurtzite-type structure, and more or less correct
for ZnSe and ZnTe with zinc-blende-type structure. The order of the states at
the top of the valence band is found to be anomalous for ZnO in both
zinc-blende- and wurtzite-type structure, but is normal for the other zinc
monochalcogenides considered. It is shown that the Zn-3d electrons and their
interference with the O-2p electrons are responsible for the anomalous order.
The typical errors in the calculated band gaps and related parameters for ZnO
originate from strong Coulomb correlations, which are found to be highly
significant for this compound. The LDA+U approach is by and large found to
correct the strong correlation of the Zn-3d electrons, and thus to improve the
agreement with the experimentally established location of the Zn-3d levels
compared with that derived from pure LDA calculations
Lineshape of the thermopower of quantum dots
Quantum dots are an important model system for thermoelectric phenomena, and
may be used to enhance the thermal-to-electric energy conversion efficiency in
functional materials. It is therefore important to obtain a detailed
understanding of a quantum-dot's thermopower as a function of the Fermi energy.
However, so far it has proven difficult to take effects of co-tunnelling into
account in the interpretation of experimental data. Here we show that a
single-electron tunnelling model, using knowledge of the dot's electrical
conductance which in fact includes all-order co-tunneling effects, predicts the
thermopower of quantum dots as a function of the relevant energy scales, in
very good agreement with experiment.Comment: 10 pages, 5 figure
Spectroscopy of Sc and ab initio calculations of strengths
The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states
and transitions in Sc following the -decay of Ca.
Branching ratios were determined from the measured -ray intensities,
and angular correlations of rays have been used to firmly assign the
spins of excited states. The presence of an isomeric state that decays by an
transition with a strength of 13.6(7)\,W.u. has been confirmed. We
compare with the first {\it ab initio} calculations of ) strengths in
light and medium-mass nuclei from the valence-space in-medium similarity
renormalization group approach, using consistently derived effective
Hamiltonians and operator. The experimental data are well reproduced for
isoscalar transitions when using bare -factors, but the strength of
isovector transitions are found to be underestimated by an order of
magnitude
A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector
A first comparison has been made between the pulse-shape discrimination
characteristics of a novel He-based pressurized scintillation detector
and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field
neutron and gamma-ray source and a high-resolution scintillation-pulse
digitizer. In particular, the capabilities of the two fast neutron detectors to
discriminate between neutrons and gamma-rays were investigated. The NE-213
liquid-scintillator reference cell produced a wide range of scintillation-light
yields in response to the gamma-ray field of the source. In stark contrast, due
to the size and pressure of the He gas volume, the He-based
detector registered a maximum scintillation-light yield of 750~keV to
the same gamma-ray field. Pulse-shape discrimination for particles with
scintillation-light yields of more than 750~keV was excellent in the
case of the He-based detector. Above 750~keV its signal was
unambiguously neutron, enabling particle identification based entirely upon the
amount of scintillation light produced.Comment: 23 pages, 7 figures, Nuclear Instruments and Methods in Physics
Research Section A review addresse
Self-Organized Criticality in Compact Plasmas
Compact plasmas, that exist near black-hole candidates and in gamma ray burst
sources, commonly exhibit self-organized non-linear behavior. A model that
simulates the non-linear behavior of compact radiative plasmas is constructed
directly from the observed luminosity and variability. The simulation shows
that such plasmas self organize, and that the degree of non-linearity as well
as the slope of the power density spectrum increase with compactness. The
simulation is based on a cellular automaton table that includes the properties
of the hot (relativistic) plasmas, and the magnitude of the energy
perturbations. The plasmas cool or heat up, depending on whether they release
more or less than the energy of a single perturbation. The energy release
depends on the plasmas densities and temperatures, and the perturbations
energy. Strong perturbations may cool the previously heated plasma through
shocks and/or pair creation.
New observations of some active galactic nuclei and gamma ray bursters are
consistent with the simulationComment: 9 pages, 5 figures, AASTeX, Submitted to ApJ
Pareto Optimal Matchings in Many-to-Many Markets with Ties
We consider Pareto-optimal matchings (POMs) in a many-to-many market of
applicants and courses where applicants have preferences, which may include
ties, over individual courses and lexicographic preferences over sets of
courses. Since this is the most general setting examined so far in the
literature, our work unifies and generalizes several known results.
Specifically, we characterize POMs and introduce the \emph{Generalized Serial
Dictatorship Mechanism with Ties (GSDT)} that effectively handles ties via
properties of network flows. We show that GSDT can generate all POMs using
different priority orderings over the applicants, but it satisfies truthfulness
only for certain such orderings. This shortcoming is not specific to our
mechanism; we show that any mechanism generating all POMs in our setting is
prone to strategic manipulation. This is in contrast to the one-to-one case
(with or without ties), for which truthful mechanisms generating all POMs do
exist
- …