22 research outputs found

    Thermal Stabilization of the HCP Phase in Titanium

    Full text link
    We have used a tight-binding model that is fit to first-principles electronic-structure calculations for titanium to calculate quasi-harmonic phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega crystal structures. We show that the true zero-temperature ground-state is the omega structure, although this has never been observed experimentally at normal pressure, and that it is the entropy from the thermal population of phonon states which stabilizes the hcp structure at room temperature. We present the first completely theoretical prediction of the temperature- and pressure-dependence of the hcp-omega phase transformation and show that it is in good agreement with experiment. The quasi-harmonic approximation fails to adequately treat the bcc phase because the zero-temperature phonons of this structure are not all stable

    Comparison of structural transformations and superconductivity in compressed Sulfur and Selenium

    Full text link
    Density-functional calculations are presented for high-pressure structural phases of S and Se. The structural phase diagrams, phonon spectra, electron-phonon coupling, and superconducting properties of the isovalent elements are compared. We find that with increasing pressure, Se adopts a sequence of ever more closely packed structures (beta-Po, bcc, fcc), while S favors more open structures (beta-Po, simple cubic, bcc). These differences are shown to be attributable to differences in the S and Se core states. All the compressed phases of S and Se considered are calculated to have weak to moderate electron-phonon coupling strengths consistent with superconducting transition temperatures in the range of 1 to 20 K. Our results compare well with experimental data on the beta-Po --> bcc transition pressure in Se and on the superconducting transition temperature in beta-Po S. Further experiments are suggested to search for the other structural phases predicted at higher pressures and to test theoretical results on the electron-phonon interaction and superconducting properties

    Effect of spin-orbit coupling on the actinide dioxides AnO2 (An=Th, Pa, U, Np, Pu, and Am): A screened hybrid density functional study

    Get PDF
    We present a systematic comparison of the lattice structures, electronic density of states, and band gaps of actinide dioxides, AnO2 (An=Th, Pa, U, Np, Pu, and Am) predicted by the Heyd-Scuseria-Ernzerhof screened hybrid density functional (HSE) with the self-consistent inclusion of spin-orbit coupling (SOC). The computed HSE lattice constants and band gaps of AnO2 are in consistently good agreement with the available experimental data across the series, and differ little from earlier HSE results without SOC. ThO2 is a simple band insulator (f 0), while PaO2, UO2, and NpO2 are predicted to be Mott insulators. The remainders (PuO2 and AmO2) show considerable O2p/An5f mixing and are classified as charge-transfer insulators. We also compare our results for UO2, NpO2, and PuO2 with the PBE+U, self interaction correction (SIC), and dynamic mean-field theory (DMFT) many-body approximations

    Effect of quantum confinement on exciton-phonon interactions

    Get PDF
    We investigate the homogeneous linewidth of localized type-I excitons in type-II GaAs/AlAs superlattices. These localizing centers represent the intermediate case between quasi-two-dimensional (Q2D) and quasi-zero-dimensional localizations. The temperature dependence of the homogeneous linewidth is obtained with high precision from micro-photoluminescence spectra. We confirm the reduced interaction of the excitons with their environment with decreasing dimensionality except for the coupling to LO-phonons. The low-temperature limit for the linewidth of these localized excitons is five times smaller than that of Q2D excitons. The coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than that of Q2D excitons. An enhancement of the average exciton-LO-phonon interaction by localization is found in our sample. But this interaction is very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure

    Reevaluating electron-phonon coupling strengths: Indium as a test case for ab initio and many-body-theory methods

    Full text link
    Using indium as a test case, we investigate the accuracy of the electron-phonon coupling calculated with state-of-the-art ab initio and many-body theory methods. The ab initio calculations -- where electrons are treated in the local-density approximation, and phonons and the electron-phonon interaction are treated within linear response -- predict an electron-phonon spectral function alpha^2 F(omega) which translates into a relative tunneling conductance that agrees with experiment to within one part in 1000. The many-body theory calculations -- where alpha^2 F(omega) is extracted from tunneling data by means of the McMillan-Rowell tunneling inversion method -- provide spectral functions that depend strongly on details of the inversion process. For the the most important moment of alpha^2 F(omega), the mass-renormalization parameter lambda, we report 0.9 +/- 0.1, in contrast to the value 0.805 quoted for nearly three decades in the literature. The ab initio calculations also provide the transport electron-phonon spectral function alpha_{tr}^2 F(omega), from which we calculate the resistivity as a function of temperature in good agreement with experiment.Comment: 16 pages, 5 figure

    Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations

    Get PDF
    Purpose To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. Patients and Methods One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). Results There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. Conclusion Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit
    corecore