421 research outputs found

    Autophagy in Non-Alcoholic Fatty Liver Disease (NAFLD)

    Get PDF
    Autophagy is a mechanism involved in cellular homeostasis under basal and stressed conditions delivering cytoplasmic content to the lysosomes for degradation to macronutrients. The potential role of autophagy in disease is increasingly recognised and investigated. To date, a key role of autophagy in hepatic lipid metabolism is recognised and dysfunctional autophagy might be an underlying cause of non-alcoholic fatty liver disease (NAFLD). Nevertheless, the exact role of autophagy in lipid metabolism remains controversial, with both a lipolytic function of autophagy and lipogenic function reported. This chapter aims to review the current knowledge on autophagy in NAFLD, with a special focus on its role in hepatic lipid metabolism, hepatic glucose metabolism and insulin resistance, steatohepatitis, hepatocellular injury and hepatic fibrogenesis. Finally, interaction with another cellular homeostatic process, the unfolded protein response (UPR), will be briefly discussed

    Targeting Myeloid-Derived Cells: New Frontiers in the Treatment of Non-alcoholic and Alcoholic Liver Disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) and Alcoholic Liver Disease (ALD) are major causes of liver-related morbidity and mortality and constitute important causes of liver transplantation. The spectrum of the liver disease is wide and includes isolated steatosis, steatohepatitis, and cirrhosis. The treatment of NAFLD and ALD remains, however, an unmet need, and therefore it is a public health priority to develop effective treatments for these diseases. Alcoholic and non-alcoholic liver disease share common complex pathogenetic pathways that involve different organs and systems beyond the liver, including the gut, the adipose tissue, and the immune system, which cross-talk to generate damage. Myeloid-derived cells have been widely studied in the setting of NAFLD and ALD and are implicated at different levels in the onset and progression of this disease. Among these cells, monocytes and macrophages have been found to be involved in the induction of inflammation and in the progression to fibrosis, both in animal models and clinical studies and they have become interesting potential targets for the treatment of both NAFLD and ALD. The different mechanisms by which these cells can be targeted include modulation of Kupffer cell activation, monocyte recruitment in the liver and macrophage polarization and differentiation. Evidence from preclinical studies and clinical trials (some of them already in phase II and III) have shown encouraging results in ameliorating steatohepatitis, fibrosis, and the metabolic profile, individuating promising candidates for the pharmacological treatment of these diseases. The currently available results of myeloid-derived cells targeted treatments in NAFLD and ALD are covered in this review

    A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH

    Get PDF
    BACKGROUND Management of nonalcoholic steatohepatitis (NASH) is an unmet clinical need. Lanifibranor is a pan-PPAR (peroxisome proliferator–activated receptor) agonist that modulates key metabolic, inflammatory, and fibrogenic pathways in the pathogenesis of NASH. METHODS In this phase 2b, double-blind, randomized, placebo-controlled trial, patients with noncirrhotic, highly active NASH were randomly assigned in a 1:1:1 ratio to receive 1200 mg or 800 mg of lanifibranor or placebo once daily for 24 weeks. The pri- mary end point was a decrease of at least 2 points in the SAF-A score (the activity part of the Steatosis, Activity, Fibrosis [SAF] scoring system that incorporates scores for ballooning and inflammation) without worsening of fibrosis; SAF-A scores range from 0 to 4, with higher scores indicating more-severe disease activity. Secondary end points included resolution of NASH and regression of fibrosis. RESULTS A total of 247 patients underwent randomization, of whom 103 (42%) had type 2 diabetes mellitus and 188 (76%) had significant (moderate) or advanced fibrosis. The percentage of patients who had a decrease of at least 2 points in the SAF-A score without worsening of fibrosis was significantly higher among those who received the 1200-mg dose, but not among those who received the 800-mg dose, of lanifibranor than among those who received placebo (1200-mg dose vs. placebo, 55% vs.33%, P = 0.007; 800-mg dose vs. placebo, 48% vs. 33%, P = 0.07). The results favored both the 1200-mg and 800-mg doses of lanifibranor over placebo for resolution of NASH without worsening of fibrosis (49% and 39%, respectively, vs. 22%), improvement in fibrosis stage of at least 1 without worsening of NASH (48% and 34%, respectively, vs. 29%), and resolution of NASH plus improvement in fibrosis stage of at least 1 (35% and 25%, respectively, vs. 9%). Liver enzyme levels decreased and the levels of the majority of lipid, inflammatory, and fibrosis biomarkers improved in the lanifibranor groups. The dropout rate for adverse events was less than 5% and was similar across the trial groups. Diarrhea, nausea, peripheral edema, anemia, and weight gain occurred more frequently with lanifibranor than with placebo. CONCLUSIONS In this phase 2b trial involving patients with active NASH, the percentage of patients who had a decrease of at least 2 points in the SAF-A score without worsening of fibrosis was significantly higher with the 1200-mg dose of lanifibranor than with placebo. These findings support further assessment of lanifibranor in phase 3 trials. (Funded by Inventiva Pharma; NATIVE ClinicalTrials.gov number, NCT0300807

    Mechanisms contributing to visceral hypersensitivity : focus on splanchnic afferent nerve signalling

    Get PDF
    This is the peer reviewed version of the following article: Deiteren, A., De Man, J. G., Keating, C., Jiang, W., De Schepper, H. U., Pelckmans, P. A., Francque, S. M. and De Winter, B. Y. (2015), Mechanisms contributing to visceral hypersensitivity: focus on splanchnic afferent nerve signaling. Neurogastroenterology & Motility, 27: 1709–1720, which has been published in final form at doi:10.1111/nmo.12667. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Visceral hypersensitivity is a main characteristic of functional bowel disorders and is mediated by both peripheral and central factors. We investigated whether enhanced splanchnic afferent signaling in vitro is associated with visceral hypersensitivity in vivo in an acute and postinflammatory rat model of colitis.Peer reviewedFinal Accepted Versio

    Review: Vascular effects of PPARs in the context of NASH.

    Get PDF
    BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors known to regulate glucose and fatty acid metabolism, inflammation, endothelial function and fibrosis. PPAR isoforms have been extensively studied in metabolic diseases, including type 2 diabetes and cardiovascular diseases. Recent data extend the key role of PPARs to liver diseases coursing with vascular dysfunction, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). AIM This review summarises and discusses the pathobiological role of PPARs in cardiovascular diseases with a special focus on their impact and therapeutic potential in NAFLD and NASH. RESULTS AND CONCLUSIONS PPARs may be attractive for the treatment of NASH due to their liver-specific effects but also because of their efficacy in improving cardiovascular outcomes, which may later impact liver disease. Assessment of cardiovascular disease in the context of NASH trials is, therefore, of the utmost importance, both from a safety and efficacy perspective

    The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) constitutes a spectrum of disease states characterized by hepatic steatosis and is closely associated to obesity and the metabolic syndrome. In non-alcoholic steatohepatitis (NASH), additionally, inflammatory changes and hepatocellular damage are present, representing a more severe condition, for which the treatment is an unmet medical need. Pathophysiologically, the immune system is one of the main drivers of NAFLD progression and other obesity-related comorbidities, and both the innate and adaptive immune system are involved. T cells form the cellular component of the adaptive immune system and consist of multiple differentially active subsets, i.e., T helper (Th) cells, regulatory T (Treg) cells, and cytotoxic T (Tc) cells, as well as several innate T-cell subsets. This review focuses on the role of these T-cell subsets in the pathogenesis of NAFLD, as well as the association with obesity and type 2 diabetes mellitus, reviewing the available evidence from both animal and human studies. Briefly, Th1, Th2, Th17, and Th22 cells seem to have an attenuating effect on adiposity. Th2, Th22, and Treg cells seem to decrease insulin resistance, whereas Th1, Th17, and Tc cells have an aggravating effect. Concerning NAFLD, both Th22 and Treg cells appear to have an overall tempering effect, whereas Th17 and Tc cells seem to induce more liver damage and fibrosis progression. The evidence regarding the role of the innate T-cell subsets is more controversial and warrants further exploration

    A multistakeholder approach to innovations in NAFLD care

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is highly prevalent globally and requires multidisciplinary care. Here, we report key findings of a NAFLD care workshop, address knowledge gaps and highlight a path to optimise healthcare resource use, to improve outcomes in patients with steatotic liver disease

    Sorted B cell transcriptomes point towards actively regulated B cell responses during ongoing chronic hepatitis B infections

    Get PDF
    The natural course of chronic hepatitis B virus (HBV) infections follows distinct clinical disease phases, char-acterized by fluctuating levels of serum HBV DNA and ALT. The immune cells and their features that govern these clinical disease transitions remain unknown. In the current study, we performed RNA sequencing on pu-rified B cells from blood (n = 42) and liver (n = 10) of healthy controls and chronic HBV patients. We found distinct gene expression profiles between healthy controls and chronic HBV patients, as evidenced by 190 differentially expressed genes (DEG), but also between the clinical phenotypes of a chronic HBV infection (17?110 DEG between each phase). Numerous immune pathways, including the B cell receptor pathway were upregulated in liver B cells when compared to peripheral B cells. Further investigation of the detected DEG suggested an activation of B cells during HBeAg seroconversion and an active regulation of B cell signalling in the liver
    corecore