4 research outputs found
X-ray imaging with compound refractive lens and microfocus X-ray tube
Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a source. Magnified images of gold mesh with 5 microns bars were obtained. Theoretical limits of CRL and experimental results are discussed
The large area detector onboard the eXTP mission
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship
mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European
participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target
launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering
unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the
design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy
range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to
200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper
we will provide an overview of the LAD instrument design, its current status of development and anticipated
performance
The large area detector onboard the eXTP mission
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance