6 research outputs found

    Rehabilitation of the hemiparetic gait by nociceptive withdrawal reflex-based functional electrical therapy: a randomized, single-blinded study

    Get PDF
    BACKGROUND: Gait deficits are very common after stroke and improved therapeutic interventions are needed. The objective of this study was therefore to investigate the therapeutic use of the nociceptive withdrawal reflex to support gait training in the subacute post-stroke phase. METHODS: Individuals were randomly allocated to a treatment group that received physiotherapy-based gait training supported by withdrawal reflex stimulation and a control group that received physiotherapy-based gait training alone. Electrical stimuli delivered to the arch of the foot elicited the withdrawal reflex at heel-off with the purpose of facilitating the initiation and execution of the swing phase. Gait was assessed before and immediately after finishing treatment, and one month and six months after finishing treatment. Assessments included the Functional Ambulation Category (FAC) test, the preferred and maximum gait velocities, the duration of the stance phase in the hemiparetic side, the duration of the gait cycle, and the stance time symmetry ratio. RESULTS: The treatment group showed an improved post treatment preferred walking velocity (p < 0.001) and fast walking velocity (p < 0.001) compared to the control group. Furthermore, subjects in the treatment group with severe walking impairment at inclusion time showed the best improvement as assessed by a longer duration of the stance phase in the hemiparetic side (p < 0.002) and a shorter duration of the gait cycle (p < 0.002). The stance time symmetry ratio was significantly better for the treatment than the control group after finishing training (p < 0.02). No differences between groups were detected with the FAC test after finishing training (p = 0.09). CONCLUSION: Withdrawal reflex-based functional electrical therapy was useful in the rehabilitation of the hemiparetic gait of severely impaired patients

    Patients' perceptions of the benefits and problems of using the ActiGait implanted drop-foot stimulator

    Get PDF
    Objective: To evaluate patients’ perceptions of the benefits and problems associated with using the ActiGait implanted drop-foot stimulator.Method: Thirteen participants who had suffered a stroke at least 6 months prior to recruitment, had a drop-foot that affected walking and had taken part in a trial in which an ActiGait drop-foot stimulator had been implanted, completed a postal questionnaire.Results: Users agreed that the ActiGait had a positive effect on walking; they used it regularly and had little difficulty with putting it on and taking it off. Reliability was a greater problem at 90 days than at the final assessment. Ten of the 13 responders either agreed or strongly agreed with the statement that the ActiGait improved their quality of life at 90 days and 9 out of 12 at the final assessment: 11 of the 12 respondents would recommend the ActiGait to others.Discussion and conclusion: From the users’ perspective theActiGait improved walking, it was reported to be used regularly and it appeared to be easier to use than a surface system. Users were equivocal about the reliability of the system at 90 days, but at the final assessment reliability had improved

    Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia

    Get PDF
    Objective: To evaluate a selective implantable drop foot stimulator (ActiGait) in terms of effect on walking and safety. Design: A phase II trial in which a consecutive sample of participants acted as their own controls. Subjects: People who had suffered a stroke at least 6 months prior to recruitment and had a drop-foot that affected walking were recruited from 3 rehabilitation centres in Denmark. Methods: Stimulators were implanted into all participants. Outcome measures were range of ankle dorsiflexion with stimulation and maximum walking speed and distance walked in 4 minutes. Measurements were applied before implantation, at 90 days and at a long-term follow-up assessment. Changes over time and with and without stimulation are reported. Safety was evaluated by nerve conduction velocity and adverse events. Results: Fifteen participants were implanted and 13 completed the trial. Long-term improvements were detected in walking speed and distance walked in 4 minutes when stimulated, and the orthotic effect of stimulation showed statistically significant improvement. The device did not compromise nerve conduction velocity and no serious device-related adverse events were reported. Technical problems were resolved by the long-term follow-up assessment at which further improvement in walking was observed. Conclusion: This trial has evaluated the safety and performance of the device, which was well accepted by patients and did not compromise safety
    corecore