263 research outputs found

    Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR)

    Get PDF
    The National Aeronautics and Space Administration’s airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes

    RCAS1 as a tumour progression marker: an independent negative prognostic factor in gallbladder cancer

    Get PDF
    Receptor-binding cancer antigen expressed on SiSo cells (RCAS1) induces apoptosis in immune cells bearing the RCAS1 receptor. We sought to determine RCAS1 involvement in the origin and progression of gallbladder cancer, and also implications of RCAS1 for patient survival. RCAS1 expression was examined immunohistochemically in 110 surgically resected gallbladder specimens. The gallbladders represented 20 cases of cholecystitis with no associated pancreaticobiliary maljunction; 23 cases of cholecystitis with pancreaticobiliary maljunction; 14 cases of adenomyomatosis; 7 adenomas; and 46 cancers. High expression of RCAS1 (immunoreactivity in over 25% of cells) was observed in 32 of the 46 cancers (70%), but not in other diseases, including pre-cancerous conditions. RCAS1 immunoreactivity was associated with depth of tumour invasion (P = 0.0180), lymph node metastasis (P = 0.0033), lymphatic involvement (P = 0.0104), venous involvement (P = 0.0224), perineural involvement (P = 0.0351) and stage by the tumour, nodes and metastases (TNM) classification (P = 0.0026). Thus, RCAS1 expression may be a relatively late event in gallbladder carcinogenesis possibly promoting tumour progression. Cox regression multivariate analysis demonstrated RCAS1 positivity to be an independent negative predictor for survival (P = 0.0337; risk ratio, 12.690; 95% confidence interval, 1.216–132.423). High expression of RCAS1 significantly correlated with tumour progression and predicted poor outcome in gallbladder cancer. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450°C, 50 MPa

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 73 (2009): 6789-6804, doi:10.1016/j.gca.2009.07.036.Oxygen and hydrogen isotope fractionation factors in the talc-water and serpentine-water systems have been determined by laboratory experiment from 250 to 450°C at 50 MPa using the partial exchange technique. Talc was synthesized from brucite + quartz, resulting in nearly 100% exchange during reaction at 350 and 450°C. For serpentine, D-H exchange was much more rapid than 18O-16O exchange when natural chrysotile fibers were employed in the initial charge. In experiments with lizardite as the starting charge, recrystallization to chrysotile enhanced the rate of 18O-16O exchange with the coexisting aqueous phase.This work was supported by NSF Grants OCE-9313980 to the Woods Hole Oceanographic Institution and OCE-9820287 to Bridgewater State College (BSC)

    Oligo-Miocene extensional tectonics and fluid flow across the Northern Snake Range detachment system, Nevada

    Get PDF
    The Northern Snake Range (Nevada) represents a spectacular example of a metamorphic core complex and exposes a complete section from the mylonitic footwall into the hanging wall of a fossil detachment system. Paired geochronological and stable isotopic data of mylonitic quartzite within the detachment footwall reveal that ductile deformation and infiltration of meteoric fluids occurred between 27 and 23 Ma. 40Ar/39Ar ages display complex recrystallization-cooling relationships but decrease systematically from 26.9 ± 0.2 Ma at the top to 21.3 ± 0.2 Ma at the bottom of footwall mylonite. Hydrogen isotope (δD) values in white mica are very low (-150 to-145 ‰) within the top 80-90 m of detachment footwall, in contrast to values obtained from the deeper part of the section where values range from-77 to-64 ‰, suggesting that time-integrated interaction between rock and meteoric fluid was restricted to the uppermost part of the mylonitic footwall. Pervasive mica-water hydrogen isotope exchange is difficult to reconcile with models of 40Ar loss during mylonitization solely by volume diffusion. Rather, we interpret the 40Ar/ 39Ar ages of white mica with low-δD values to date syn-mylonitic hydrogen and argon isotope exchange, and we conclude that the hydrothermal system of the Northern Snake Range was active during late Oligocene (27-23 Ma) and has been exhumed by the combined effects of ductile strain, extensional detachment faulting, and erosion. Copyright 2011 by the American Geophysical Union
    corecore