44 research outputs found

    Seismic exploration at Fuji volcano with active sources : The outline of the experiment and the arrival time data

    Get PDF
    Fuji volcano (altitude 3,776m) is the largest basaltic stratovolcano in Japan. In late August and early September 2003, seismic exploration was conducted around Fuji volcano by the detonation of 500 kg charges of dynamite to investigate the seismic structure of that area. Seismographs with an eigenfrequency of 2 Hz were used for observation, positioned along a WSW-ENE line passing through the summit of the mountain. A total of 469 seismic stations were installed at intervals of 250-500 m. The data were stored in memory on-site using data loggers. The sampling interval was 4 ms. Charges were detonated at 5 points, one at each end of the observation line and 3 along its length. The first arrival times and the later-phase arrival times at each station for each detonation were recorded as data. P-wave velocities in the surface layer were estimated from the travel time curves near the explosion points, with results of 2.5 km/s obtained for the vicinity of Fuji volcano and 4.0 km5/s elsewhere

    東京都における第1号介護保険料に関する研究

    No full text

    Targeting CAM-DR and Mitochondrial Transfer for the Treatment of Multiple Myeloma

    No full text
    The prognosis of patients with multiple myeloma (MM) has improved dramatically with the introduction of new therapeutic drugs, but the disease eventually becomes drug-resistant, following an intractable and incurable course. A myeloma niche (MM niche) develops in the bone marrow microenvironment and plays an important role in the drug resistance mechanism of MM. In particular, adhesion between MM cells and bone marrow stromal cells mediated by adhesion molecules induces cell adhesion-mediated drug resistance (CAM-DR). Analyses of the role of mitochondria in cancer cells, including MM cells, has revealed that the mechanism leading to drug resistance involves exchange of mitochondria between cells (mitochondrial transfer) via tunneling nanotubes (TNTs) within the MM niche. Here, we describe the discovery of these drug resistance mechanisms and the identification of promising therapeutic agents primarily targeting CAM-DR, mitochondrial transfer, and TNTs
    corecore