37 research outputs found

    Three-dimensional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions

    No full text
    Abstract Background Sugar-protein glycocalyx coats healthy endothelium, but its ultrastructure is not well described. Our aim was to determine the three-dimensional ultrastructure of capillary endothelial glycocalyx in the heart, kidney, and liver, where capillaries are, respectively, continuous, fenestrated, and sinusoidal. Methods Tissue samples were processed with lanthanum-containing alkaline fixative, which preserves the structure of glycocalyx. Results Scanning and transmission electron microscopy revealed that the endothelial glycocalyx layer in continuous and fenestrated capillaries was substantially thicker than in sinusoids. In the heart, the endothelial glycocalyx presented as moss- or broccoli-like and covered the entire luminal endothelial cell surface. In the kidney, the glycocalyx appeared to nearly occlude the endothelial pores of the fenestrated capillaries and was also present on the surface of the renal podocytes. In sinusoids of the liver, glycocalyx covered not only the luminal side but also the opposite side, facing the space of Disse. In a mouse lipopolysaccharide-induced experimental endotoxemia model, the capillary endothelial glycocalyx was severely disrupted; that is, it appeared to be peeling off the cells and clumping. Serum concentrations of syndecan-1, a marker of glycocalyx damage, were significantly increased 24 h after administration of lipopolysaccharide. Conclusions In the present study, we visualized the three-dimensional ultrastructure of endothelial glycocalyx in healthy continuous, fenestrated, and sinusoidal capillaries, and we also showed their disruption under experimental endotoxemic conditions. The latter may provide a morphological basis for the microvascular endothelial dysfunction associated with septic injury to organs

    Cosmic ray nuclei detection in the balloon borne nuclear emulsion gamma ray telescope flight in Australia (GRAINE 2015)

    No full text
    Nuclear emulsion plates for studying elementary particle physics as well as cosmic ray physics are very powerful tracking tools with sub-micron spatial resolutions of charged particle trajectories. Even if gamma rays have to be detected, electron-positron pair tracks can provide precise information to reconstruct their direction and energy with high accuracy. Recent developments of emulsion analysis technology can digitally handle almost all tracks recorded in emulsion plates by using the Hyper Track Selector of the OPERA group at NAGOYA University. On the other hand, the potential of time resolutions have been equipped by emulsion multilayer shifter technology in the GRAINE (Gamma Ray Astro-Imager with Nuclear Emulsion) experiments, the aims of which are to detect cosmic gamma rays such as the Vela pulsar stellar object by precise emulsion tracking analysis and to study cosmic ray particle interactions and chemical compositions. In this paper, we focus on the subject of cosmic ray nuclei detection in the GRAINE balloon flight experiments launched at Alice Springs, Australia in May 2015
    corecore