5 research outputs found

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p

    Profiling of gene expression biomarkers as a classifier of methotrexate nonresponse in patients with rheumatoid arthritis

    No full text
    OBJECTIVE: Approximately 30–40% of rheumatoid arthritis (RA) patients who are initially started on low‐dose methotrexate (MTX) will not benefit from the treatment. To date, no reliable biomarkers of MTX inefficacy in RA have been identified. The aim of this study was to analyze whole blood samples from RA patients at 2 time points (pretreatment and 4 weeks following initiation of MTX), to identify gene expression biomarkers of the MTX response. METHODS: RA patients who were about to commence treatment with MTX were selected from the Rheumatoid Arthritis Medication Study. Using European League Against Rheumatism (EULAR) response criteria, 42 patients were categorized as good responders and 43 as nonresponders at 6 months following the initation of MTX treatment. Data on whole blood transcript expression were generated, and supervised machine learning methods were used to predict a EULAR nonresponse. Models in which transcript levels were included were compared to models in which clinical covariates alone (e.g., baseline disease activity, sex) were included. Gene network and ontology analysis was also performed. RESULTS: Based on the ratio of transcript values (i.e., the difference in log(2)‐transformed expression values between 4 weeks of treatment and pretreatment), a highly predictive classifier of MTX nonresponse was developed using L2‐regularized logistic regression (mean ± SEM area under the receiver operating characteristic [ROC] curve [AUC] 0.78 ± 0.11). This classifier was superior to models that included clinical covariates (ROC AUC 0.63 ± 0.06). Pathway analysis of gene networks revealed significant overrepresentation of type I interferon signaling pathway genes in nonresponders at pretreatment (P = 2.8 × 10(−25)) and at 4 weeks after treatment initiation (P = 4.9 × 10(−28)). CONCLUSION: Testing for changes in gene expression between pretreatment and 4 weeks post–treatment initiation may provide an early classifier of the MTX treatment response in RA patients who are unlikely to benefit from MTX over 6 months. Such patients should, therefore, have their treatment escalated more rapidly, which would thus potentially impact treatment pathways. These findings emphasize the importance of a role for early treatment biomarker monitoring in RA patients started on MTX

    The RA-MAP Consortium:A working model for academia-industry collaboration

    No full text
    corecore