91 research outputs found
Surfactant protein D contributes to ocular defense against Pseudomonas aeruginosa in a murine model of dry eye disease.
Dry eye disease can cause ocular surface inflammation that disrupts the corneal epithelial barrier. While dry eye patients are known to have an increased risk of corneal infection, it is not known whether there is a direct causal relationship between these two conditions. Here, we tested the hypothesis that experimentally-induced dry eye (EDE) increases susceptibility to corneal infection using a mouse model. In doing so, we also examined the role of surfactant protein D (SP-D), which we have previously shown is involved in corneal defense against infection. Scopolamine injections and fan-driven air were used to cause EDE in C57BL/6 or Black Swiss mice (wild-type and SP-D gene-knockout). Controls received PBS injections and were housed normally. After 5 or 10 days, otherwise uninjured corneas were inoculated with 10(9) cfu of Pseudomonas aeruginosa strain PAO1. Anesthesia was maintained for 3 h post-inoculation. Viable bacteria were quantified in ocular surface washes and corneal homogenates 6 h post-inoculation. SP-D was measured by Western immunoblot, and corneal pathology assessed from 6 h to 4 days. EDE mice showed reduced tear volumes after 5 and 10 days (each by ∼75%, p<0.001) and showed fluorescein staining (i.e. epithelial disruption). Surprisingly, there was no significant difference in corneal pathology between EDE mice and controls (∼10-14% incidence). Before bacterial inoculation, EDE mice showed elevated SP-D in ocular washes. After inoculation, fewer bacteria were recovered from ocular washes of EDE mice (<2% of controls, p = 0.0004). Furthermore, SP-D knockout mice showed a significant increase in P. aeruginosa corneal colonization under EDE conditions. Taken together, these data suggest that SP-D contributes to corneal defense against P. aeruginosa colonization and infection in EDE despite the loss of barrier function to fluorescein
MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2.
Mucosal surfaces regulate defenses against infection and excessive inflammation. We previously showed that human tears upregulated epithelial expression of genes encoding RNase7 and ST2, which inhibited Pseudomonas aeruginosa invasion of human corneal epithelial cells. Here, microRNA microarrays were used to show that a combination of tear fluid exposure (16 h) then P. aeruginosa antigens (3 h) upregulated miR-762 and miR-1207, and down-regulated miR-92 and let-7b (all > 2-fold) in human corneal epithelial cells compared to P. aeruginosa antigens alone. RT-PCR confirmed miR-762 upregulation ∼ 3-fold in tear-antigen exposed cells. Without tears or antigens, an antagomir reduced miR-762 expression relative to scrambled controls by ∼50%, increased expression of genes encoding RNase7 (∼80 %), ST2 (∼58%) and Rab5a (∼75%), without affecting P. aeruginosa internalization. However, P. aeruginosa invasion was increased > 3-fold by a miR-762 mimic which reduced RNase7 and ST2 gene expression. Tear fluid alone also induced miR-762 expression ∼ 4-fold, which was reduced by the miR-762 antagomir. Combination of tear fluid and miR-762 antagomir increased RNase7 and ST2 gene expression. These data show that mucosal fluids, such as tears, can modulate epithelial microRNA expression to regulate innate defense genes, and that miR-762 negatively regulates RNase7, ST2 and Rab5a genes. Since RNase7 and ST2 inhibit P. aeruginosa internalization, and are upregulated by tear fluid, other tear-induced mechanisms must counteract inhibitory effects of miR-762 to regulate resistance to bacteria. These data also suggest a complex relationship between tear induction of miR-762, its modulation of innate defense genes, and P. aeruginosa internalization
Contributions of MyD88-dependent receptors and CD11c-positive cells to corneal epithelial barrier function against Pseudomonas aeruginosa.
Previously we reported that corneal epithelial barrier function against Pseudomonas aeruginosa was MyD88-dependent. Here, we explored contributions of MyD88-dependent receptors using vital mouse eyes and confocal imaging. Uninjured IL-1R (-/-) or TLR4 (-/-) corneas, but not TLR2 (-/-), TLR5 (-/-), TLR7 (-/-), or TLR9 (-/-), were more susceptible to P. aeruginosa adhesion than wild-type (3.8-fold, 3.6-fold respectively). Bacteria adherent to the corneas of IL-1R (-/-) or TLR5 (-/-) mice penetrated beyond the epithelial surface only if the cornea was superficially-injured. Bone marrow chimeras showed that bone marrow-derived cells contributed to IL-1R-dependent barrier function. In vivo, but not ex vivo, stromal CD11c+ cells responded to bacterial challenge even when corneas were uninjured. These cells extended processes toward the epithelial surface, and co-localized with adherent bacteria in superficially-injured corneas. While CD11c+ cell depletion reduced IL-6, IL-1β, CXCL1, CXCL2 and CXCL10 transcriptional responses to bacteria, and increased susceptibility to bacterial adhesion (>3-fold), the epithelium remained resistant to bacterial penetration. IL-1R (-/-) corneas also showed down-regulation of IL-6 and CXCL1 genes with and without bacterial challenge. These data show complex roles for TLR4, TLR5, IL-1R and CD11c+ cells in constitutive epithelial barrier function against P. aeruginosa, with details dependent upon in vivo conditions
Mucosal Fluid Glycoprotein DMBT1 Suppresses Twitching Motility and Virulence of the Opportunistic Pathogen Pseudomonas Aeruginosa
It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosachemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect against P. aeruginosa infection. This study also advances our understanding of how mucosal fluids protect against infection, and suggests directions for novel biocompatible strategies to protect our surface epithelia against a major opportunistic pathogen
Pseudomonas Aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion
Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozymeinduced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P \u3c 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections
Human Tear Fluid Reduces Culturability of Contact Lens-Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence-Associated Type III Secretion System
Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens(CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ∼108 CFU viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ∼180-fold (P\u3c.001). CL growth increased T3SS gene expression versus planktonic bacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (P=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS(P=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (P=.04) and 1.89 ± 0.26-fold (P\u3c.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis
The Impact of ExoS on Pseudomonas Aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression
Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosaand its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosaand corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQmutation in effector-null PA103 promoted internalization by \u3e10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by \u3e10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is often referred to as an extracellular pathogen, despite its demonstrated capacity to invade and survive within host cells. Fueling the confusion, P. aeruginosa encodes T3SS effectors with anti-internalization activity that, paradoxically, play critical roles in intracellular survival. Here, we sought to address why ExoS does not prevent internalization of the P. aeruginosastrains that natively encode it. Results showed that ExoS exerted unusually strong anti-internalization activity under conditions of expression in the effector-null background of strain PA103, often used to study T3SS effector activity. Inhibition of internalization was associated with T3SS hyperinducibility and ExoS delivery. PA103 fleQ mutation, preventing flagellar assembly, further reduced internalization but did so independently of ExoS. The results revealed intracellular T3SS expression by all strains and suggested that T3SS bistability influences P. aeruginosa internalization. These findings reconcile controversies in the literature surrounding P. aeruginosa internalization and support the principle that P. aeruginosa is not exclusively an extracellular pathogen
Contributions of MyD88-Dependent Receptors and CD11c-Positive Cells to Corneal Epithelial Barrier Function Against Pseudomonas Aeruginosa
Previously we reported that corneal epithelial barrier function against Pseudomonas aeruginosa was MyD88-dependent. Here, we explored contributions of MyD88-dependent receptors using vital mouse eyes and confocal imaging. Uninjured IL-1R (−/−) or TLR4 (−/−) corneas, but not TLR2 (−/−), TLR5 (−/−), TLR7 (−/−), or TLR9 (−/−), were more susceptible to P. aeruginosa adhesion than wild-type (3.8-fold, 3.6-fold respectively). Bacteria adherent to the corneas of IL-1R (−/−) or TLR5 (−/−) mice penetrated beyond the epithelial surface only if the cornea was superficially-injured. Bone marrow chimeras showed that bone marrow-derived cells contributed to IL-1R-dependent barrier function. In vivo, but not ex vivo, stromal CD11c+ cells responded to bacterial challenge even when corneas were uninjured. These cells extended processes toward the epithelial surface, and co-localized with adherent bacteria in superficially-injured corneas. While CD11c+ cell depletion reduced IL-6, IL-1β, CXCL1, CXCL2 and CXCL10 transcriptional responses to bacteria, and increased susceptibility to bacterial adhesion (\u3e3-fold), the epithelium remained resistant to bacterial penetration. IL-1R (−/−) corneas also showed down-regulation of IL-6 and CXCL1 genes with and without bacterial challenge. These data show complex roles for TLR4, TLR5, IL-1R and CD11c+ cells in constitutive epithelial barrier function against P. aeruginosa, with details dependent upon in vivo conditions
- …