231 research outputs found
Uberon: towards a comprehensive multi-species anatomy ontology
The lack of a single unified species-neutral ontology covering the anatomy of a variety of metazoans is a hindrance to translating model organism research to human health. We have developed an Uber-anatomy ontology to fill this need, filling the gap between the CARO upper-level ontology and species-specific anatomical ontologies
Sequence Ontology Annotation Guide
This Sequence Ontology (SO) [13] aims to unify the way in which we describe
sequence annotations, by providing a controlled vocabulary of terms and the
relationships between them. Using SO terms to label the parts of sequence annotations
greatly facilitates downstream analyses of their contents, as it ensures that annotations
produced by different groups conform to a single standard. This greatly facilitates
analyses of annotation contents and characteristics, e.g. comparisons of UTRs,
alternative splicing, etc. Because SO also specifies the relationships between features,
e.g. part_of, kind_of, annotations described with SO terms are also better substrates
for validation and visualization software
Survey-based naming conventions for use in OBO Foundry ontology development
A wide variety of ontologies relevant to the biological and medical domains are
available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical
experience and surveys of community opinion. We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming
of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and
inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data
Uberon, an integrative multi-species anatomy ontology
We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.or
Reactome - a knowledgebase of human biological pathways
Pathway curation is a powerful tool for systematically associating gene products with functions. Reactome (www.reactome.org) is a manually curated human pathway knowledgebase describing a wide range of biological processes in a computationally accessible manner. The core unit of the Reactome data model is the Reaction, whose instances form a network of biological interactions through entities that are consumed, produced, or act as catalysts. Entities are distinguished by their molecular identities and cellular locations. Set objects allow grouping of related entities. Curation is based on communication between expert authors and staff curators, facilitated by freely available data entry tools. Manually curated data are subjected to quality control and peer review by a second expert. Reactome data are released quarterly. At release time, electronic orthology inference performed on human data produces reaction predictions in 22 species ranging from mouse to bacteria. Cross-references to a large number of publicly available databases are attached, providing multiple entry points into the database. The Reactome Mart allows query submission and data retrieval from Reactome and across other databases. The SkyPainter tool provides visualization and statistical analysis of user supplied data, e.g. from microarray experiments. Reactome data are freely available in a number of data formats (e.g. BioPax, SBML)
Joining forces in the quest for orthologs
Building momentum to coordinate and leverage community orthology prediction resources
Recommended from our members
The Sequence Ontology: a tool for the unification of genome annotations.
The Sequence Ontology (SO) is a structured controlled vocabulary for the parts of a genomic annotation. SO provides a common set of terms and definitions that will facilitate the exchange, analysis and management of genomic data. Because SO treats part-whole relationships rigorously, data described with it can become substrates for automated reasoning, and instances of sequence features described by the SO can be subjected to a group of logical operations termed extensional mereology operators.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Integrating phenotype ontologies across multiple species
Phenotype ontologies are typically constructed to serve the needs of a particular community, such as annotation of genotype-phenotype associations in mouse or human. Here we demonstrate how these ontologies can be improved through assignment of logical definitions using a core ontology of phenotypic qualities and multiple additional ontologies from the Open Biological Ontologies library. We also show how these logical definitions can be used for data integration when combined with a unified multi-species anatomy ontology
- …