6 research outputs found

    Preparation and Product Characterization of Microwaveable Food Using <i>Lentinus edodes</i> Protein through 3D Printing

    No full text
    The Lentinus edodes protein (LP) is a high-quality protein known for its well-balanced amino acid composition. In this study, we developed three-dimensional (3D)-printed microwaveable food using a combination of LP and potato flour, and optimized the formulation to achieve a ratio of LP: potato flour: xanthan gum: water = 2:8:1:23. The 3D-printed samples exhibited better shape, weight, and size compared to the molded samples after microwave treatment, with the most favorable microwave effect observed at a 90% filling ratio. The LP content affected the viscosity and retrogradation value of the LP–potato starch mixture. Microwave duration affected the surface hardness, interior softness, and moisture content of the product. The highest overall score of 8.295 points was obtained with a microwave processing duration of 2 min. This study lays a foundation for the development of LP-based 3D-printed food

    <i>Lentinus edodes</i> Powder Improves the Quality of Wheat Flour Gluten Sticks

    No full text
    Spicy wheat flour gluten sticks are delicious and affordable puffed snacks for young adults and even minors in China, and have a relatively simple nutritional quality. L. edodes powder (LEP) is rich in nutrients and boasts a variety of biological activities. This study evaluated the effects of different concentrations of LEP addition on the quality of wheat flour gluten sticks. The gelatinization results of the products showed that the peak viscosity decreased from 454 cP to 251 cP; the breakdown value decreased from 169 cP to 96 cP; and the setback value decreased from 381 cP to 211 cP. With the increase in LEP, the radial expansion rate (RER) of L. edodes gluten sticks (LSGS) first increased and then decreased, reaching a maximum value of 1.388 in the 10% LEP group. The oil absorption rate (OAR) of LSGS increased from 5.124% to 14.852% with the increase in the amount of LEP. Additionally, texture profile analysis showed that the hardness value increased from 1148.898 to 2055.492 g; the chewiness value increased from 1010.393 to 1499.233; and the springiness value decreased from 1.055 to 0.612. Through X-ray diffraction (XRD), it was found that the crystal type was transformed from A-type crystal to B-type and V-type crystals. Low field nuclear magnetic resonance (LF-NMR) results showed that the moisture distribution in the products was basically bound water. The scanning electron microscopy (SEM) results showed that, with the increase in the LEP amount, the surface of the products changed from rough to smooth. Sensory evaluation results indicated that the products with 10% LEP helped to maintain better taste and quality of LSGS, with an average score of 7.628, which was the most popular among consumers. This study not only increases the possible raw materials for use in extruded puffed food, but also provides a new possibility for the production of high-quality edible fungi extruded products

    Bioconversion of High-Calorie Potato Starch to Low-Calorie &beta;-Glucan via 3D Printing Using Pleurotus eryngii Mycelia

    No full text
    Edible fungi play an important role in material and energy cycling. This study explored the role of Pleurotus eryngii mycelia in the transformation of potato high-calorie starch to low-calorie &beta;-glucan. First, the 3D printing performance of the potato medium was optimized. After inoculating the fermentation broth of Pleurotus eryngii in 3D printing, we studied the microstructure and material composition of the product. Along with the increase in 3D printing filling ratio, the starch content of the culture product decreased from 84.18% to 60.35%, while the starch content in the solid medium prepared using the mold was 67.74%. The change in &beta;-glucan content in cultured products was opposite to that of starch, and the content of the culture product increased from 12.57% to 24.31%, while the &beta;-glucan content in the solid medium prepared using the mold was 22.17%. The amino acid composition and content of the 3D printing culture system and solid culture products prepared using the mold were similar. The 3D printing culture system promoted the bioconversion efficiency of mycelia. It also showed high application potential of Pleurotus eryngii mycelia for the preparation of low-calorie food

    Glucocorticoid receptor-mediated Nr1d1 chromatin circadian misalignment in stress-induced irritable bowel syndrome

    No full text
    Summary: Stress-elevated glucocorticoids cause circadian disturbances and gut-brain axis (GBA) disorders, including irritable bowel syndrome (IBS). We hypothesized that the glucocorticoid receptor (GR/NR3C1) might cause chromatin circadian misalignment in the colon epithelium. We observed significantly decreased core circadian gene Nr1d1 in water avoidance stressed (WAS) BALB/c colon epithelium, like in IBS patients. WAS decreased GR binding at the Nr1d1 promoter E-box (enhancer box), and GR could suppress Nr1d1 via this site. Stress also altered GR binding at the E-box sites along the Ikzf3-Nr1d1 chromatin and remodeled circadian chromatin 3D structures, including Ikzf3-Nr1d1 super-enhancer, Dbp, and Npas2. Intestinal deletion of Nr3c1 specifically abolished these stress-induced transcriptional alternations relevant to IBS phenotypes in BALB/c mice. GR mediated Ikzf3-Nr1d1 chromatin disease related circadian misalignment in stress-induced IBS animal model. This animal model dataset suggests that regulatory SNPs of human IKZF3-NR1D1 transcription through conserved chromatin looping have translational potential based on the GR-mediated circadian-stress crosstalk
    corecore