4 research outputs found

    Nuclear Receptor Coactivator 2 Promotes Human Breast Cancer Cell Growth by Positively Regulating the MAPK/ERK Pathway

    Get PDF
    As a member of the p160 steroid receptor coactivator (SRC) family, nuclear receptor coactivator 2 (NCOA2) is known to play essential roles in many physiological and pathological processes, including development, endocrine regulation, and tumorigenesis. However, the biological function of NCOA2 in breast cancer is not fully understood. We found that the copy number of the NCOA2 gene was frequently amplified in four breast cancers datasets, varying from 6 to 10%, and the mRNA levels of NCOA2 were also upregulated in 11% of the sequenced cases/patients (TCGA provisional dataset). Next, we confirmed that NCOA2 silencing significantly suppressed cell proliferation in different breast cancer cell lines, by inducing cell cycle arrest and apoptosis. Mechanistically, whole-transcriptome sequencing (RNA-Seq) analysis showed that NCOA2 depletion leads to downregulation of the MAPK/ERK signaling cascade, possibly via downregulating NCOA2's downstream target RASEF. In conclusion, our results suggest NCOA2 as a potential target of therapeutics against breast cancer

    Clinical and radiographic outcomes of the treatment of adolescent idiopathic scoliosis with segmental pedicle screws and combined local autograft and allograft bone for spinal fusion: a retrospective case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High morbidity has been reported with iliac crest bone graft harvesting; however, donor bone is typically necessary for posterior spinal fusion. Autograft bone combined with allograft may reduce the morbidity associated with iliac crest bone harvesting and improve the fusion rate. Our aim in this study was to determine the presence of complications, pseudarthrosis, non-union, and infection using combined <it>in situ </it>local autograft bone and freeze-dried cancellous allograft bone in patients undergoing posterior spinal fusion for the treatment of adolescent idiopathic scoliosis.</p> <p>Methods</p> <p>A combination of <it>in situ </it>local autograft bone and freeze-dried cancellous allograft blocks were used in 50 consecutive patients with adolescent idiopathic scoliosis treated by posterior fusion and Moss Miami pedicle screw instrumentation. Results were assessed clinically and radiographically and quality of life and functional outcome was evaluated by administration of a Chinese version of the SRS-22 survey.</p> <p>Results</p> <p>There were 41 female and 9 male patients included for analysis with an average age of 14.7 years (range, 12-17). All patients had a minimum follow-up of 18 months (range, 18 to 40 months). The average preoperative Cobb angle was 49.8° (range, 40° to 86°). The average number of levels fused was 9.8 (range, 6-15). Patients had a minimum postoperative follow-up of 18 months. At final follow-up, the average Cobb angle correction was 77.8% (range, 43.4 to 92.5%). There was no obvious loss in the correction, and the average loss of correction was 1.1° (range, 0° to 4°). There was no pseudarthrosis and no major complications.</p> <p>Conclusions</p> <p><it>In situ </it>autograft bone combined with allograft bone may be a promising method enhances spinal fusion in AIS treated with pedicle screw placement. By eliminating the need for iliac crest bone harvesting, significant morbidity may be avoided.</p

    Working Cannula-Based Endoscopic Foraminoplasty: A Technical Note

    No full text
    Purpose. Percutaneous endoscopic lumbar discectomy (PELD) is a minimally invasive disc surgery that can be performed under local anesthesia and requires only an eight-mm skin incision. For the patients with lumbar foraminal stenosis, the migrated disc is difficult to remove with a simple transforaminal approach. In such cases, the foraminoplasty techniques can be used. However, obtaining efficient foramen enlargement while minimizing radiation exposure and protecting the nerves can be challenging. Methods. In this study, we propose a new technique called the Kiss-Hug maneuver. Under endoscopic viewing, we used the bevel tip of a working cannula as a bone reamer to enlarge the foramen. This allowed us to efficiently enlarge the lumbar foramen endoscopically without the redundancy and complications associated with reamers or trephines. Results. Details of the four steps of the Kiss-Hug maneuver are reported along with adverse events. The advantages of this new technique include minimizing radiation exposure to both the surgeon and the patient and decreasing the overall operation time. Conclusion. The endoscopic Kiss-Hug maneuver is a useful and reliable foraminoplasty technique that can enhance the efficiency of foraminoplasty while ensuring patient safety and reducing radiation exposure
    corecore