11 research outputs found
The Anzhen Risk Scoring System for Acute Type A Aortic Dissection: A Prospective Observational Study Protocol
Introduction: Acute type A aortic dissection (ATAAD) is a catastrophic disease with fatal outcomes. Malperfusion syndrome (MPS) is a serious complication of ATAAD, with an incidence of 20–40%. Many studies have shown that MPS is the main risk factor for poor ATAAD prognosis. However, a risk scoring system for ATAAD based on MPS is lacking. Here, we designed a risk scoring system for ATAAD to assess mortality through quantitative assessment of relevant organ malperfusion and subsequently develop rational treatment strategies.Methods and analysis: This was a prospective observational study. Patients’ perioperative clinical data were collected to establish a database of ATAAD (N≥3000) and determine whether these patients had malperfusion complications. The Anzhen risk scoring system was established on the basis of organ malperfusion by using a random forest survival model and a logistics model. The better method was then chosen to establish a revised risk scoring system.Ethics and dissemination: This study received ethical approval from the Ethics Committees of Beijing Anzhen Hospital, Capital Medical University (KS2019034-1). Patient consent was waived because biological samples were not collected, and no patient rights were violated. Findings will be disseminated at scientific conferences and in peer-reviewed publications
Effect of Polymer Blends on the Properties of Foamed Wood-Polymer Composites
The polypropylene (PP)/wood flour (WF) composites were prepared using a co-rotating twin-screw extruder followed by a single-screw extruder foaming system in this paper. Polymers, such as polyolefin elastomer (POE), high-density polyethylene (HDPE) or microcrystalline wax, were blended with PP in the preparation of composites to improve the melt strength. And a cavity transfer mixer was introduced to increase the distribution uniformity of components in composites. Meanwhile, the effect of the polymer blends on the microstructure and mechanical properties of samples was investigated. The experimental results show that the addition of POE and HDPE resulted in the second melting peak in the differential scanning calorimeter (DSC) curves and a great decrease in the cell size was caused by the added POE. However, due to the velocity difference of composites in the die, the shape of bubbles gradually became irregular. Moreover, the impact strength of samples significantly increased by 85% for the added POE and the apparent density decreased by 6.7%. And the minimum Vicat softening temperature of 133.7 °C was obtained when the mass ratio of HDPE to PP was 4/6
A MEMS-Based High-Fineness Fiber-Optic Fabry–Perot Pressure Sensor for High-Temperature Application
In this paper, a high-fineness fiber-optic Fabry–Perot high-temperature pressure sensor, based on MEMS technology, is proposed and experimentally verified. The Faber–Perot cavity of the pressure sensor is formed by the anodic bonding of a sensitive silicon diaphragm and a Pyrex glass; a high-fineness interference signal is obtained by coating the interface surface with a high-reflection film, so as to simplify the signal demodulation system. The experimental results show that the pressure sensitivity of this sensor is 55.468 nm/MPa, and the temperature coefficient is 0.01859 nm/°C at 25~300 °C. The fiber-optic pressure sensor has the following advantages: high fineness, high temperature tolerance, high consistency and simple demodulation, resulting in a wide application prospect in the field of high-temperature pressure testing
Expression of circ-PHC3 enhances ovarian cancer progression via regulation of the miR-497-5p/SOX9 pathway
Abstract Background Accumulating studies have reported indispensable functions of circular RNAs (circRNA) in tumor progression through regulation of gene expression. However, circRNA expression profiles and functions in human ovarian carcinoma (OC) are yet to be fully established. Methods In this research, deep sequencing of circRNAs from OC samples and paired adjacent normal tissues was performed to establish expression profiles and circ-PHC3 levels between the groups further compared using RT-qPCR. The effects of ectopic overexpression of miR-497-5p and SOX9 and siRNA-mediated knockdown of circ-PHC3 and an miR-497-5p inhibitor were explored to clarify the regulatory mechanisms underlying circ-PHC3 activity in OC proliferation and metastasis. Information from public databases and the luciferase reporter assay were further utilized to examine the potential correlations among circ-PHC3, miR-497-5p and SOX9. Results Our results showed significant upregulation of circ-PHC3 in both OC cell lines and tissues. In the luciferase reporter assay, downregulation of circ-PHC3 led to suppression of metastasis and proliferation, potentially through targeted effects on the miR-497-5p/SOX9 axis in OC. SOX9 overexpression or miR-497-5p suppression rescued OC cell proliferation and invasion following silencing of circ-PHC3. Moreover, SOX9 inhibition induced restoration of OC cell invasion and proliferation under conditions of overexpression of miR-497-5p. Thus, circ-PHC3 appears to exert effects on cancer stem cell differentiation through regulation of the miR-497-5p/SOX9 axis. Conclusion Taken together, our findings suggest that circ-PHC3 enhances OC progression through functioning as an miR-497-5p sponge to promote SOX9 expression, supporting its potential as a promising candidate target for OC therapy
Additional file 1 of Expression of circ-PHC3 enhances ovarian cancer progression via regulation of the miR-497-5p/SOX9 pathway
Additional file 1