5 research outputs found
OBSERVING THE INUNDATED AREA USING LANDSAT-8 MULTITEMPORAL IMAGES AND DETERMINATION OF FLOOD-PRONE AREA IN BANDUNG BASIN
Flood is the most frequent hydro-meteorological disaster in Indonesia. Flood disasters in the Bandung basin result from increasing population density, especially in the Citarum riverbank area, accompanied by land use changes in upstream of the Citarum catchment area which has disrupted the river’s function. One of the basic issues that need to be investigated is which areas of the Bandung basin are prone to flooding. This study offers an effective and efficient method of mapping flood-prone areas based on flood events that have occurred in the past through the use of historical remote sensing image data. In this research, Landsat-8 imagery was used to observe the inundated area in the Bandung basin in the past (2014–2018) using an improved algorithm, the modified normalized water index (MNDWI). The results of the study show that MNDWI is the appropriate parameter to be used to detect flooded areas in the Bandung basin area that have heterogeneous land surface conditions. The flood-prone area was determined based on flood events for 2014 to 2018, identified as inundated areas in the images. The estimation of the flood-prone area in the Bandung basin is 11,886.87 ha. Most of the flood-prone areas are in the subdistricts of Rancaekek, Bojongsoang, Solokan Jeruk, Ciparay, Cileunyi, Bale Endah and Cikancung. This area geographically or naturally is a water habitat area. Therefore, if the area will be used for residential, this will have consequences that flood will always be a threat to the area.
Admissibility of Illegally Obtained Evidence
The increasing volcanic activity of Anak Krakatau volcano has raised concerns about a major disaster in the area around the Sunda Strait. The objective of the research is to fuse Landsat-8 OLI (Operational Land Imager) and Sentinel-1 TOPS (Terrain Observation with Progressive Scans), an integration of SAR and optic remote sensing data, in observing the lava flow deposits resulted from Anak Krakatau eruption during the middle 2018 eruption. RGBI and the Brovey transformation were conducted to merge (fuse) the optical and SAR data. Â The results showed that optical and SAR data fusion sharpened the appearance of volcano morphology and lava flow deposits. The regions are often constrained by cloud cover and volcanic ash, which occurs at the time of the volcanic eruption. Â The RGBI-VV and Brovey RGB-VV methods provide better display quality results in revealing the morphology of volcanic cone and lava deposits. The entire slopes of Anak Krakatau Volcano, with a radius of about 1 km from the crater is an area prone to incandescent lava and pyroclastic falls. The direction of the lava flow has the potential to spread in all directions. The fusion method of optical Landsat-8 and Sentinel-1 SAR data can be used continuously in monitoring the activity of Anak Krakatau volcano and other volcanoes in Indonesia both in cloudy and clear weather conditions
SPECTRAL ANALYSIS OF THE HIMAWARI-8 DATA FOR HOTSPOT DETECTION FROM LAND/FOREST FIRES IN SUMATRA
Himawari-8 is the last generation of the low spatial resolution satellite imagery that has capability to detect the thermal variation on the earth of every 10 minute. This must be very potential to be used for detecting land/forest fire. This paper has explored the spectral prospective of the Himawari-8 for detecting land/forest fire hotspot. The main objective for this study is to identify the potential use of Himawari-8 for detecting of land forest fire hotspot. The study area was performed in Ogan Komering Ilir, South of Sumatra, which on 2015 occur great forest/land fire event. The main process included in this study are image projection, training sample collection and spectral statistical analysis measured by calculate statistic, they are average values, standard deviation values from reflectance visible band value and brightness temperature value, beside that validation of data obtained from medium resolution data of Landsat 8 with the similar acquisition time. The study found that the Himawari-8 has good capacity to identify land/forest fire hotspot as expressed for high accuracy assessment using band 3 and band 7
DETECTING THE AREA DAMAGE DUE TO COAL MINING ACTIVITIES USING LANDSAT MULTITEMPORAL (Case Study: Kutai Kartanegara, East Kalimantan)
Coal is one of the most mining commodities to date, especially to supply both national and international energy needs. Coal mining activities that are not well managed will have an impact on the occurrence of environmental damage. This research tried to utilize the multitemporal Landsat data to analyze the land damage caused by coal mining activities. The research took place at several coal mine sites in East Kalimantan Province. The method developed in this research is the method of change detection. The study tried to know the land damage caused by mining activities using NDVI (Normalized Difference Vegetation Index), NDSI (Normalized Difference Soil Index), NDWI (Normalized Difference Water Index) and GEMI (Global Environment Monitoring Index) parameter based change detection method. The results showed that coal mine area along with the damage that occurred in it can be detected from multitemporal Landsat data using NDSI value-based change detection method. The area damage due to coal mining activities can be classified into high, moderate, and low classes based on the mean and standard deviation of NDSI changes (ΔNDSI). The results of this study are expected to be used to support government efforts and mining managers in post-mining land reclamation activities