6 research outputs found

    Identification of Sec36p, Sec37p, and Sec38p: Components of Yeast Complex That Contains Sec34p and Sec35p

    No full text
    The Saccharomyces cerevisiae proteins Sec34p and Sec35p are components of a large cytosolic complex involved in protein transport through the secretory pathway. Characterization of a new secretion mutant led us to identify SEC36, which encodes a new component of this complex. Sec36p binds to Sec34p and Sec35p, and mutation of SEC36 disrupts the complex, as determined by gel filtration. Missense mutations of SEC36 are lethal with mutations in COPI subunits, indicating a functional connection between the Sec34p/sec35p complex and the COPI vesicle coat. Affinity purification of proteins that bind to Sec35p-myc allowed identification of two additional proteins in the complex. We call these two conserved proteins Sec37p and Sec38p. Disruption of either SEC37 or SEC38 affects the size of the complex that contains Sec34p and Sec35p. We also examined COD4, COD5, and DOR1, three genes recently reported to encode proteins that bind to Sec35p. Each of the eight genes that encode components of the Sec34p/sec35p complex was tested for its contribution to cell growth, protein transport, and the integrity of the complex. These tests indicate two general types of subunits: Sec34p, Sec35p, Sec36p, and Sec38p seem to form the essential core of a complex to which Sec37p, Cod4p, Cod5p, and Dor1p seem to be peripherally attached

    Environmental studies in Lake Baikal: basic facts and perspectives for interdisciplinary research

    Get PDF
    Lake Baikal in Siberia is one of the most interesting lakes in the world. It is the world’s largest reservoir of fresh surface water and home to several hundred endemic species. At the same time it harboured the first underwater neutrino telescope NT200, now followed by its successor Baikal-GVD, a cubic-kilometre scale neutrino telescope. Within the Baikal Neutrino project a number of methods and instruments have been designed to study various processes in the Baikal ecosystem. Hundreds of optical, acoustic and other sensors allow for long-term 3D monitoring of water parameters like temperature, inherent optical properties or the intensity of water luminescence, as well as processes like sedimentation or deep water renewal. Here we present selected results of the interdisciplinary environmental studies

    Environmental studies in Lake Baikal: basic facts and perspectives for interdisciplinary research

    No full text
    Lake Baikal in Siberia is one of the most interesting lakes in the world. It is the world’s largest reservoir of fresh surface water and home to several hundred endemic species. At the same time it harboured the first underwater neutrino telescope NT200, now followed by its successor Baikal-GVD, a cubic-kilometre scale neutrino telescope. Within the Baikal Neutrino project a number of methods and instruments have been designed to study various processes in the Baikal ecosystem. Hundreds of optical, acoustic and other sensors allow for long-term 3D monitoring of water parameters like temperature, inherent optical properties or the intensity of water luminescence, as well as processes like sedimentation or deep water renewal. Here we present selected results of the interdisciplinary environmental studies
    corecore