59 research outputs found

    Baikal-GVD

    Full text link
    We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    A rare case of pure white cell aplasia in a patient with thymoma complicated by infective endocarditis

    No full text
    Introduction. Pure white cell aplasia (PWCA) is a rare hematologic disorder characterized by the absence of neutrophil lineages in the bone marrow, with intact megakaryopoiesis and erythropoiesis. PWCA is commonly associated with several immune pathologies. Cytopenia in patients with thymoma is a paraneoplastic syndrome, along with other manifestations. The two major clinical issues in PWCA are various infectious complications and ulcerative-necrotic lesions of the skin and mucosa membranes. Case presentation. We present a rare case of a patient with thymoma and PWCA, as paraneoplastic syndrome. On the background of agranulocytosis, the patient developed sepsis and infective endocarditis (IE) caused by a rare agent, carbapenem-resistant Klebsiella pneumoniae. Conclusions. The rarity of endocarditis caused by Klebsiella species limits its recognition and awareness of its often severe course. Most cases of endocarditis with Klebsiella pneumoniae are associated with prosthetic heart valves. In patients with immunosuppression, such as PWCA associated with thymoma, and endocarditis, rare microorganisms must be considered. © 2021 Balkan Medical Union. All rights reserved

    ФИНАНСЫ В ЦИФРОВОЙ ЭКОНОМИКЕ: СОХРАНЕНИЕ ТРАДИЦИЙ И НОВЫЕ ГОРИЗОНТЫ

    No full text
    Сборник посвящен вопросам теории и практики управлении финансами в цифровой экономике на микро-, мезо- и макроуровнях

    Baikal-GVD: cascades

    No full text
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The design of Baikal-GVD allows one to search for astrophysical neutrinos with flux values measured by IceCube already at early phases of the array construction. We present here preliminary results of the search for high-energy neutrinos via the cascade mode obtained in 2015 and 2016

    Baikal-GVD: status and prospects

    No full text
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named "Dubna" . The first cluster in it’s baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full-scale GVD will be an array of ~10.000 light sensors with an instrumented volume about of 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015 - 2017

    Baikal-GVD: cascades

    Get PDF
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The design of Baikal-GVD allows one to search for astrophysical neutrinos with flux values measured by IceCube already at early phases of the array construction. We present here preliminary results of the search for high-energy neutrinos via the cascade mode obtained in 2015 and 2016

    Baikal-GVD: status and prospects

    No full text
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named "Dubna" . The first cluster in it’s baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full-scale GVD will be an array of ~10.000 light sensors with an instrumented volume about of 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015 - 2017

    Time calibration of the neutrino telescope Baikal-GVD

    Get PDF
    Baikal-GVD is a cubic-kilometer scale neutrino telescope, which is currently under construction in Lake Baikal. Baikal-GVD is an array of optical modules arranged in clusters. The first cluster of the array has been deployed and commissioned in April 2015. To date, Baikal-GVD consists of 3 clusters with 864 optical modules. One of the vital conditions for optimal energy, position and direction reconstruction of the detected particles is the time calibration of the detector. In this article, we describe calibration equipment and methods used in Baikal-GVD and demonstrate the accuracy of the calibration procedures
    corecore