5 research outputs found

    Comprehensive validation of transient stability calculations in electric power systems and hardware-software tool for its implementation

    Get PDF
    Reliability and survivability of electric power systems (EPS) depend on transient stability assessment (TSA). One of the most effective way to TSA is time-domain simulation. However, large-scale EPS mathematical model contains a stiff nonlinear system of high-order differential equations. Such system cannot be solved analytically. At the same time, numerical methods are imperfectly applied for such system due to limitation conditions. To make it appropriate, the EPS mathematical model is simplified and additional limitations are used. These simplifications and limitations reduce reliability of simulation results. Consequently, their validation is needed. The most reliable approach to provide it is to compare the simulation results with the field data. However, in practice, there are not enough data for such validation. This paper proposes an alternative approach for validation - the application of a reference model instead of field data. A hardware-software system HRTSim was used as a reference model. This power system simulator has all the necessary properties and capabilities to obtain reliable information required for comprehensive validation of transient stability calculations in EPSs. Main disturbances leading to instability in EPSs are investigated to conduct the validation (processes in cases of faults, single-phase auto-reclosing operation and power system interconnection). Fragments of corresponding experimental studies illustrate the efficiency of the proposed approach. Obtained results confirmed the possibility of the developed approach to identify the causes of numerical calculation errors and to determine disturbances calculated with the significant error. In addition, experimental studies have revealed that numerical calculations error depends on disturbances intensity

    Research, Development and Application of Hybrid Model of Back-to-Back HVDC Link

    Get PDF
    Recent hybrid simulators (or co-simulators) of the electric power system are focused on scientific and research features to propose and develop novel and more accurate simulators. The present paper demonstrates one more hybrid modelling approach based on application and combination of three modeling approaches all together: physical, analog and digital. The primary focus of the proposed approach is to develop the simulation tool ensuring such vital characteristics as three-phase simulation and modeling of a single spectrum of processes in electric power system, without separation of the electromagnetic and electromechanical transient stages. Moreover, unlimited scalability of the electric power system model and real-time simulation to ensure the opportunity of data exchange with external devices have been considered. The description of the development of the hybrid model of back-to-back HVDC link based on the proposed approach is discussed and analyzed. To confirm properties of the mentioned hybrid simulation approach and hybrid model of back-to-back HVDC link, the simulation results of the interconnection of non-synchronously operating parts of the electric power system; power flow regulation; dynamic response to external fault and damping of power oscillation in electric power system are presented and examined. Moreover, to confirm the adequacy of the obtained results, the comparison with a detailed voltage source converter HVDC model (Simulink Matlab) and Eurostag software are introduced

    Software and Hardware Complex for Setting of Automatic Excitation Regulators of Turbogenerators

    No full text
    The motivation of the presented research is based on the needs for development of new methods and tools for research setting problem of automatic excitation regulators of turbogenerators. Simulation tools must meet the requirements of reproduction processes reliability in all elements of electric power system. The developed block diagram of the adequate mathematical model of automatic excitation regulator is presented. The simulation results of electric power system scheme confirm the adequacy of the reproduction processes of functioning of automatic excitation regulator and a generator

    Approach to Creating an Information-Control System of Hybrid Power System Simulator

    No full text
    The results of development and experimental investigations of information and control hybrid simulator system of conventional and smart grids are considered in the paper. The fragments of the given system experimental investigation and its software tools are provided. Performed results illustrate the possibilities and features offered to a user and necessary for solution of complex power system design, research and exploitation tasks
    corecore