5 research outputs found

    Imaging Methods Applicable in the Diagnostics of Alzheimer’s Disease, Considering the Involvement of Insulin Resistance

    No full text
    Alzheimer’s disease (AD) is an incurable neurodegenerative disease and the most frequently diagnosed type of dementia, characterized by (1) perturbed cerebral perfusion, vasculature, and cortical metabolism; (2) induced proinflammatory processes; and (3) the aggregation of amyloid beta and hyperphosphorylated Tau proteins. Subclinical AD changes are commonly detectable by using radiological and nuclear neuroimaging methods such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Furthermore, other valuable modalities exist (in particular, structural volumetric, diffusion, perfusion, functional, and metabolic magnetic resonance methods) that can advance the diagnostic algorithm of AD and our understanding of its pathogenesis. Recently, new insights into AD pathoetiology revealed that deranged insulin homeostasis in the brain may play a role in the onset and progression of the disease. AD-related brain insulin resistance is closely linked to systemic insulin homeostasis disorders caused by pancreas and/or liver dysfunction. Indeed, in recent studies, linkages between the development and onset of AD and the liver and/or pancreas have been established. Aside from standard radiological and nuclear neuroimaging methods and clinically fewer common methods of magnetic resonance, this article also discusses the use of new suggestive non-neuronal imaging modalities to assess AD-associated structural changes in the liver and pancreas. Studying these changes might be of great clinical importance because of their possible involvement in AD pathogenesis during the prodromal phase of the disease

    TREM2 coding variants in Slovak Alzheimer's disease patients

    No full text
    Background: Triggering receptor expressed on myeloid cells 2 (TREM2) is an important modulator of innate immune responses. In the human brain, TREM2 is primarily expressed on microglia and is involved in cell survival, phagocytosis, and regulation of inflammation. TREM2 dysfunction has been linked to the pathogenesis of various neurodegenerative diseases including Alzheimer’s disease (AD). Rare coding variants of the TREM2 gene have been reported to modulate AD risk in several populations, however, data on their association with susceptibility to AD in the Slovak population have been missing. Methods: We have analyzed 10 non-synonymous coding variants located in TREM2 exon 2 by direct sequencing in 270 late-onset Alzheimer’s disease (LOAD) patients and 331 controls. Results: Four out of 10 TREM2 mutant variants have been identified in the analyzed groups, namely rs75932628 C > T (R47H), rs142232675 C > T (D87N), rs143332484 C > T (R62H), and rs2234253 G > T (T96K). R47H was found only in the AD group, while T96K was present only in the controls. Although no significant association between TREM2 coding variants and LOAD susceptibility has been detected, the observed odds ratio (OR) of 3.69 for R47H carriers suggests an increased risk of LOAD for this variant in the Slovak population. Moreover, we also found a higher OR for the rs143332484-T allele in APOEε4 non-carriers (1.99) when compared to APOEε4 carriers (0.62). Conclusions: Our results suggest an impact of specific TREM2 rare coding variants on AD risk in the Slovak population

    Aerobic-Strength Exercise Improves Metabolism and Clinical State in Parkinson’s Disease Patients

    No full text
    Regular exercise ameliorates motor symptoms in Parkinson's disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson's disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics.www.ClinicalTrials.gov, identifier NCT02253732

    ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease

    No full text
    Alzheimer’s disease (AD) pathology is partly characterized by accumulation of aberrant forms of tau protein. Here we report the results of ADAMANT, a 24-month double-blinded, parallel-arm, randomized phase 2 multicenter placebo-controlled trial of AADvac1, an active peptide vaccine designed to target pathological tau in AD (EudraCT 2015-000630-30). Eleven doses of AADvac1 were administered to patients with mild AD dementia at 40 μg per dose over the course of the trial. The primary objective was to evaluate the safety and tolerability of long-term AADvac1 treatment. The secondary objectives were to evaluate immunogenicity and efficacy of AADvac1 treatment in slowing cognitive and functional decline. A total of 196 patients were randomized 3:2 between AADvac1 and placebo. AADvac1 was safe and well tolerated (AADvac1 n = 117, placebo n = 79; serious adverse events observed in 17.1% of AADvac1-treated individuals and 24.1% of placebo-treated individuals; adverse events observed in 84.6% of AADvac1-treated individuals and 81.0% of placebo-treated individuals). The vaccine induced high levels of IgG antibodies. No significant effects were found in cognitive and functional tests on the whole study sample (Clinical Dementia Rating-Sum of the Boxes scale adjusted mean point difference −0.360 (95% CI −1.306, 0.589)), custom cognitive battery adjusted mean z-score difference of 0.0008 (95% CI −0.169, 0.172). We also present results from exploratory and post hoc analyses looking at relevant biomarkers and clinical outcomes in specific subgroups. Our results show that AADvac1 is safe and immunogenic, but larger stratified studies are needed to better evaluate its potential clinical efficacy and impact on disease biomarkers

    Aerobic-Strength Exercise Improves Metabolism and Clinical State in Parkinson’s Disease Patients

    No full text
    Regular exercise ameliorates motor symptoms in Parkinson’s disease (PD). Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11). The effects of exercise on resting energy expenditure (REE), glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS) were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS), bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK). However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr) recovery (31P-MRS) were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF) expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS). Exercise training improved the clinical state in early/mid-stage Parkinson’s disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise-induced improvements in the PD clinical state were associated with specific adaptive changes in muscle functional, metabolic, and molecular characteristics.Clinical Trial Registrationwww.ClinicalTrials.gov, identifier NCT02253732
    corecore