176 research outputs found

    Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination

    Get PDF
    An infectious bronchitis virus Arkansas DPI (Ark DPI) virulent strain was sequenced, analyzed and compared with many different IBV strains and coronaviruses. The genome of Ark DPI consists of 27,620 nucleotides, excluding poly (A) tail, and comprises ten open reading frames. Comparative sequence analysis of Ark DPI with other IBV strains shows striking similarity to the Conn, Gray, JMK, and Ark 99, which were circulating during that time period. Furthermore, comparison of the Ark genome with other coronaviruses demonstrates a close relationship to turkey coronavirus. Among non-structural genes, the 5'untranslated region (UTR), 3C-like proteinase (3CLpro) and the polymerase (RdRp) sequences are 100% identical to the Gray strain. Among structural genes, S1 has 97% identity with Ark 99; S2 has 100% identity with JMK and 96% to Conn; 3b 99%, and 3C to N is 100% identical to Conn strain. Possible recombination sites were found at the intergenic region of spike gene, 3'end of S1 and 3a gene. Independent recombination events may have occurred in the entire genome of Ark DPI, involving four different IBV strains, suggesting that genomic RNA recombination may occur in any part of the genome at number of sites. Hence, we speculate that the Ark DPI strain originated from the Conn strain, but diverged and evolved independently by point mutations and recombination between field strains

    Recessive Antimorphic Alleles Overcome Functionally Redundant Loci to Reveal TSO1 Function in Arabidopsis Flowers and Meristems

    Get PDF
    Arabidopsis TSO1 encodes a protein with conserved CXC domains known to bind DNA and is homologous to animal proteins that function in chromatin complexes. tso1 mutants fall into two classes due to their distinct phenotypes. Class I, represented by two different missense mutations in the CXC domain, leads to failure in floral organ development, sterility, and fasciated inflorescence meristems. Class II, represented by a nonsense mutation and a T-DNA insertion line, develops wild-type–like flowers and inflorescences but shows severely reduced fertility. The phenotypic variability of tso1 alleles presents challenges in determining the true function of TSO1. In this study, we use artificial microRNA, double mutant analysis, and bimolecular fluorescence complementation assay to investigate the molecular basis underlying these two distinct classes of phenotypes. We show that the class I mutants could be converted into class II by artificial microRNA knockdown of the tso1 mutant transcript, suggesting that class I alleles produce antimorphic mutant proteins that interfere with functionally redundant loci. We identified one such redundant factor coded by the closely related TSO1 homolog SOL2. We show that the class I phenotype can be mimicked by knocking out both TSO1 and its homolog SOL2 in double mutants. Such antimorphic alleles targeting redundant factors are likely prevalent in Arabidopsis and maybe common in organisms with many sets of paralogous genes such as human. Our data challenge the conventional view that recessive alleles are always hypomorphic or null and that antimorphic alleles are always dominant. This study shows that recessive alleles can also be antimorphic and can produce a phenotype more severe than null by interfering with the function of related loci. This finding adds a new paradigm to classical genetic concepts, with important implications for future genetic studies both in basic research as well as in agriculture and medicine

    The whole mitochondrial DNA sequence of MS/Ae mice

    No full text
    corecore