1,199 research outputs found

    Reconstructing Three-dimensional Structure of Underlying Triaxial Dark Halos From Xray and Sunyaev-Zel'dovich Effect Observations of Galaxy Clusters

    Full text link
    While the use of galaxy clusters as {\it tools} to probe cosmology is established, their conventional description still relies on the spherical and/or isothermal models that were proposed more than 20 years ago. We present, instead, a deprojection method to extract their intrinsic properties from X-ray and Sunyaev--Zel'dovich effect observations in order to improve our understanding of cluster physics. First we develop a theoretical model for the intra-cluster gas in hydrostatic equilibrium in a triaxial dark matter halo with a constant axis ratio. In this theoretical model, the gas density profiles are expressed in terms of the intrinsic properties of the dark matter halos. Then, we incorporate the projection effect into the gas profiles, and show that the gas surface brightness profiles are expressed in terms of the eccentricities and the orientation angles of the dark halos. For the practical purpose of our theoretical model, we provide several empirical fitting formulae for the gas density and temperature profiles, and also for the surface brightness profiles relevant to X-ray and Sunyaev--Zel'dovich effect observations. Finally, we construct a numerical algorithm to determine the halo eccentricities and orientation angles using our model, and demonstrate that it is possible in principle to reconstruct the 3D structures of the dark halos from the X-ray and/or Sunyaev-Zel'dovich effect cluster data alone without requiring priors such as weak lensing informations and without relying on such restrictive assumptions as the halo axial symmetry about the line-of-sight.Comment: Accepted version, new discussions added, typos and minor mistakes corrected, ApJ in press (2004, Feb. 1 scheduled, Vol. 601, No. 2 issue),26 pages, 7 postscript figure

    Modeling Intra-Cluster Gas in Triaxial Dark Halos : An Analytical Approach

    Full text link
    We present the first physical model for the non-spherical intra-cluster gas distribution in hydrostatic equilibrium under the gravity of triaxial dark matter halos. Adopting the concentric triaxial density profiles of the dark halos with constant axis ratios proposed by Jing & Suto (2002), we derive an analytical expression for the triaxial halo potential on the basis of the perturbation theory, and find the hydrostatic solutions for the gas density and temperature profiles both in isothermal and polytropic equations of state. The resulting iso-potential surfaces are well approximated by triaxial ellipsoids with the eccentricities dependent on the radial distance. We also find a formula for the eccentricity ratio between the intra-cluster gas and the underlying dark halo. Our results allow one to determine the shapes of the underlying dark halos from the observed intra-cluster gas through the X-ray and/or the Sunyaev-Zel'dovich effects clusters.Comment: accepted by ApJ, LaTex file, 22 pages, 8 postscript figure

    An MASW survey for landslide risk assessment: A case study in Valjevo, Serbia

    Get PDF
    The MASW method is applied to the slope of landslide-risk area near Valjevo, Serbia. This is a part of SEG’s Geoscientists without Borders project, following the rain-caused disasters in the Balkan area in 2014. Association of Geoscientists and Environmentalists of Serbia organized the project involving specialists from around the world, local students, government individuals, and local communities. The data were primarily collected for reflection seismic analyses. The MASW processing used a subset of the data by extracting appropriate traces. The S-wave velocity sections analyzed through MASW are compared with the reflection seismic section and consistent features are identified to lead to a geologically plausible interpretation. This result will be integrated with electric resistivity survey and drilling data to contribute to designing disaster mitigation plan

    Where Are the Baryons? II: Feedback Effects

    Full text link
    Numerical simulations of the intergalactic medium have shown that at the present epoch a significant fraction (40-50%) of the baryonic component should be found in the (T~10^6K) Warm-Hot Intergalactic Medium (WHIM) - with several recent observational lines of evidence indicating the validity of the prediction. We here recompute the evolution of the WHIM with the following major improvements: (1) galactic superwind feedback processes from galaxy/star formation are explicitly included; (2) major metal species (O V to O IX) are computed explicitly in a non-equilibrium way; (3) mass and spatial dynamic ranges are larger by a factor of 8 and 2, respectively, than in our previous simulations. Here are the major findings: (1) galactic superwinds have dramatic effects, increasing the WHIM mass fraction by about 20%, primarily through heating up warm gas near galaxies with density 10^{1.5}-10^4 times the mean density. (2) the fraction of baryons in WHIM is increased modestly from the earlier work but is ~40-50%. (3) the gas density of the WHIM is broadly peaked at a density 10-20 times the mean density, ranging from underdense regions to regions that are overdense by 10^3-10^4. (4) the median metallicity of the WHIM is 0.18 Zsun for oxygen with 50% and 90% intervals being (0.040,0.38) and (0.0017,0.83).Comment: 44 pages, 17 figures, high res version at http://www.astro.princeton.edu/~cen/baryonII.ps.g

    Imaging Simulations of the Sunyaev-Zel'dovich Effect for ALMA

    Full text link
    We present imaging simulations of the Sunyaev-Zel'dovich effect of galaxy clusters for the Atacama Large Millimeter/submillimeter Array (ALMA) including the Atacama Compact Array (ACA). In its most compact configuration at 90GHz, ALMA will resolve the intracluster medium with an effective angular resolution of 5 arcsec. It will provide a unique probe of shock fronts and relativistic electrons produced during cluster mergers at high redshifts, that are hard to spatially resolve by current and near-future X-ray detectors. Quality of image reconstruction is poor with the 12m array alone but improved significantly by adding ACA; expected sensitivity of the 12m array based on the thermal noise is not valid for the Sunyaev-Zel'dovich effect mapping unless accompanied by an ACA observation of at least equal duration. The observations above 100 GHz will become excessively time-consuming owing to the narrower beam size and the higher system temperature. On the other hand, significant improvement of the observing efficiency is expected once Band 1 is implemented in the future.Comment: 16 pages, 12 figures. Accepted for publication in PASJ. Note added in proof is include

    Bispectrum and Nonlinear Biasing of Galaxies: Perturbation Analysis, Numerical Simulation and SDSS Galaxy Clustering

    Get PDF
    We consider nonlinear biasing models of galaxies with particular attention to a correlation between linear and quadratic biasing coefficients, b_1 and b_2. We first derive perturbative expressions for b_1 and b_2 in halo and peak biasing models. Then we compute power spectra and bispectra of dark matter particles and halos using N-body simulation data and of volume-limited subsamples of Sloan Digital Sky Survey (SDSS) galaxies, and determine their b_1 and b_2. We find that the values of those coefficients at linear regimes (k<0.2h/Mpc) are fairly insensitive to the redshift-space distortion and the survey volume shape. The resulting normalized amplitudes of bispectra, Q, for equilateral triangles, are insensitive to the values of b_1 implying that b_2 indeed correlates with b_1. The present results explain the previous finding of Kayo et al. (2004) for the hierarchical relation of three-point correlation functions of SDSS galaxies. While the relations between b_1 and b_2 are quantitatively different for specific biasing models, their approximately similar correlations indicate a fairly generic outcome of the biasing due to the gravity in primordial Gaussian density fields.Comment: 14 pages, 8 figures, accepted for publication in PAS
    corecore