588 research outputs found
Radiometry for Nighttime Sub-Cloud Imaging of Venus' Surface in the Near-InfraRed Spectrum
Does radiometry (e.g., signal-to-noise ratio) limit the performance of
near-IR subcloud imaging of our sister planet's surface at night? It does not.
We compute subcloud radiometry using above-cloud observations, an assumed
ground temperature, sub-cloud absorption and emission modeling, and Rayleigh
scattering simulations. We thus confirm both archival and recent studies that
deployment of a modest subcloud camera does enable high-resolution surface
imaging.Comment: 14 pages, 8 figure
Recommended from our members
Application of nonlinear wave modulation spectroscopy to discern material damage
Materials containing structural damage have a far greater nonlinear elastic response than materials with no structural damage. This is the basis for nonlinear wave diagnostics of damage, methods which are remarkably sensitive to the detection and progression of damage in materials. Here the authors describe one nonlinear method, the application of harmonics and sum and difference frequency to discern damage in materials. The method is termed Nonlinear Wave Modulation Spectroscopy (NWMS). It consists of exciting a sample with continuous waves of two separate frequencies simultaneously, and inspecting the harmonics of the two waves, and their sum and difference frequencies (sidebands). Undamaged materials are essentially linear in their response to the two waves, while the same material, when damaged, becomes highly nonlinear, manifested by harmonics and sideband generation. The authors illustrate the method by experiments on uncracked and cracked plexiglass and sandstone samples, and by applying it to intact and damaged engine components
Hole Hopping through Tryptophan in Cytochrome P450
Electron-transfer kinetics have been measured in four conjugates of cytochrome P450 with surface-bound Ru-photosensitizers. The conjugates are constructed with enzymes from Bacillus megaterium (CYP102A1) and Sulfolobus acidocaldarius (CYP119). A W96 residue lies in the path between Ru and the heme in CYP102A1, whereas H76 is present at the analogous location in CYP119. Two additional conjugates have been prepared with (CYP102A1)W96H and (CYP119)H76W mutant enzymes. Heme oxidation by photochemically generated Ru^(3+) leads to P450 compound II formation when a tryptophan residue is in the path between Ru and the heme; no heme oxidation is observed when histidine occupies this position. The data indicate that heme oxidation proceeds via two-step tunneling through a tryptophan radical intermediate. In contrast, heme reduction by photochemically generated Ru+ proceeds in a single electron tunneling step with closely similar rate constants for all four conjugates
Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies
To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents
ESI, a new Keck Observatory echellette spectrograph and imager
The Echellette Spectrograph and Imager (ESI) is a multipurpose instrument
which has been delivered by the Instrument Development Laboratory of Lick
Observatory for use at the Cassegrain focus of the Keck II telescope. ESI saw
first light on August 29, 1999. ESI is a multi-mode instrument that enables the
observer to seamlessly switch between three modes during an observation. The
three modes of ESI are: An R=13,000-echellette mode; Low-dispersion prismatic
mode; Direct imaging mode. ESI contains a unique flexure compensation system
which reduces the small instrument flexure to negligible proportions.
Long-exposure images on the sky show FWHM spot diameters of 34 microns (0.34")
averaged over the entire field of view. These are the best non-AO images taken
in the visible at Keck Observatory to date. Maximum efficiencies are measured
to be 28% for the echellette mode and greater than 41% for low-dispersion
prismatic mode including atmospheric, telescope and detector losses. In this
paper we describe the instrument and its development. We also discuss the
performance-testing and some observational results.Comment: 10 pages, 14 figures, 8tables, accepted for publication in PASP, 15
April 200
Time-domain diffuse correlation spectroscopy
Physiological monitoring of oxygen delivery to the brain has great significance for improving the management of patients at risk for brain injury. Diffuse correlation spectroscopy (DCS) is a rapidly growing optical technology able to non-invasively assess the blood flow index (BFi) at the bedside. The current limitations of DCS are the contamination introduced by extracerebral tissue and the need to know the tissue's optical properties to correctly quantify the BFi. To overcome these limitations, we have developed a new technology for time-resolved diffuse correlation spectroscopy. By operating DCS in the time domain (TD-DCS), we are able to simultaneously acquire the temporal point-spread function to quantify tissue optical properties and the autocorrelation function to quantify the BFi. More importantly, by applying time-gated strategies to the DCS autocorrelation functions, we are able to differentiate between short and long photon paths through the tissue and determine the BFi for different depths. Here, we present the novel device and we report the first experiments in tissue-like phantoms and in rodents. The TD-DCS method opens many possibilities for improved non-invasive monitoring of oxygen delivery in humans
Erratum: Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients
Corrected disclosures for the article “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients.” DOI: 10.1117/1.NPh.5.4.045005.Published versio
Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis
This paper presents a nonlinear imaging method for the detection of the nonlinear signature due to impact damage in complex anisotropic solids with diffuse field conditions. The proposed technique, based on a combination of an inverse filtering approach with phase symmetry analysis and frequency modulated excitation signals, is applied to a number of waveforms containing the nonlinear impulse responses of the medium. Phase symmetry analysis was used to characterize the third order nonlinearity of the structure by exploiting its invariant properties with the phase angle of the input waveforms. Then, a “virtual” reciprocal time reversal imaging process, using only one broadcasting transducer and one receiving transducer, was used to insonify the defect taking advantage of multiple linear scattering as mode conversion and boundary reflections. The robustness of this technique was experimentally demonstrated on a damaged sandwich panel, and the nonlinear source, induced by low-velocity impact loading, was retrieved with a high level of accuracy. Its minimal processing requirements make this method a valid alternative to the traditional nonlinear elastic wave spectroscopy techniques for materials showing either classical or non-classical nonlinear behavior
Capillary electrophoresis of ultrasmall carboxylate functionalized silicon nanoparticles
Capillary electrophoresis is used to separate ultrasmall ( approximately 1 nm) carboxylate functionalized Si nanoparticles (Si-np-COO(-)) prepared via hydrosilylation with an omega-ester 1-alkene. The electropherograms show a monodisperse Si core size with one or two carboxylate groups added to the surface. On-column detection of their laser-induced fluorescence demonstrates that the individual Si-np-COO(-) have narrow emissions (full width at half maximum = 30-40 nm) with a nearly symmetric lineshape. Preparative scale electrophoresis should be a viable route for purification of the Si-np-COO(-) for further study and future applications
- …