62 research outputs found

    Arthropods as disease vectors in a changing environment.

    No full text
    Arthropod vectors need to acquire energy, moisture, hosts and shelter from their environment. Changing human populations and industrialization affect almost every aspect of the environment. In particular, the prospects of climatic warming, urbanization and vegetation changes have the potential to materially affect global patterns of vector-borne diseases. Global warming will enable the expansion of the geographical distributions of vectors. The population dynamics of vectors will change in response to extended seasons suitable for development followed by less severe winters. The incidence of epidemics is likely to change in response to an expected disproportionate increase in the frequency of extreme climatic events. The impact of such changes on each of the major vector-borne diseases is reviewed and projections are made on the likely global areas at risk from spread of disease vectors. Research needs are identified and response strategies are suggested in the context of the ever-increasing impact of human populations and industrial activity on the environment

    Applications of CLIMEX modelling leading to improved biological control

    No full text
    Wilmot Senaratne, Bill Palmer and Bob Sutherst recently published their paper 'Applications of CLIMEX modelling leading to improved biological control' in Proceedings of the 16th Australian Weeds Conference. They looked at three examples where modern climate matching techniques using computer software produces decisions and results than might happen using previous techniques such as climadiagrams. Assessment of climatic suitability is important at various stages of a biological control project; from initial foreign exploration, to risk assessment in preparation for the release of a particular agent, through to selection of release sites that maximise the agent´s chances of initial establishment. It is now also necessary to predict potential future distributions of both target weeds and agents under climate change
    corecore