8,233 research outputs found
GAPS IN THE HEISENBERG-ISING MODEL
We report on the closing of gaps in the ground state of the critical
Heisenberg-Ising chain at momentum . For half-filling, the gap closes at
special values of the anisotropy , integer. We explain
this behavior with the help of the Bethe Ansatz and show that the gap scales as
a power of the system size with variable exponent depending on . We use
a finite-size analysis to calculate this exponent in the critical region,
supplemented by perturbation theory at . For rational
fillings, the gap is shown to be closed for {\em all} values of and
the corresponding perturbation expansion in shows a remarkable
cancellation of various diagrams.Comment: 12 RevTeX pages + 4 figures upon reques
Crossover from Fermi Liquid to Non-Fermi Liquid Behavior in a Solvable One-Dimensional Model
We consider a quantum moany-body problem in one-dimension described by a
Jastrow type, characterized by an exponent and a parameter .
We show that with increasing , the Fermi Liquid state (
crosses over to non-Fermi liquid states, characterized by effective
"temperature".Comment: 8pp. late
Spectral flow in the supersymmetric - model with a interaction
The spectral flow in the supersymmetric {\it t-J} model with
interaction is studied by analyzing the exact spectrum with twisted boundary
conditions. The spectral flows for the charge and spin sectors are shown to
nicely fit in with the motif picture in the asymptotic Bethe ansatz. Although
fractional exclusion statistics for the spin sector clearly shows up in the
period of the spectral flow at half filling, such a property is generally
hidden once any number of holes are doped, because the commensurability
condition in the motif is not met in the metallic phase.Comment: 8 pages, revtex, Phys. Rev. B54 (1996) August 15, in pres
Solutions to the Multi-Component 1/R Hubbard Model
In this work we introduce one dimensional multi-component Hubbard model of
1/r hopping and U on-site energy. The wavefunctions, the spectrum and the
thermodynamics are studied for this model in the strong interaction limit
. In this limit, the system is a special example of Luttinger
liquids, exhibiting spin-charge separation in the full Hilbert space.
Speculations on the physical properties of the model at finite on-site energy
are also discussed.Comment: 9 pages, revtex, Princeton-May1
Dyson's Brownian Motion and Universal Dynamics of Quantum Systems
We establish a correspondence between the evolution of the distribution of
eigenvalues of a matrix subject to a random Gaussian perturbing
matrix, and a Fokker-Planck equation postulated by Dyson. Within this model, we
prove the equivalence conjectured by Altshuler et al between the space-time
correlations of the Sutherland-Calogero-Moser system in the thermodynamic limit
and a set of two-variable correlations for disordered quantum systems
calculated by them. Multiple variable correlation functions are, however, shown
to be inequivalent for the two cases.Comment: 10 pages, revte
Universal Level dynamics of Complex Systems
. We study the evolution of the distribution of eigenvalues of a
matrix subject to a random perturbation drawn from (i) a generalized Gaussian
ensemble (ii) a non-Gaussian ensemble with a measure variable under the change
of basis. It turns out that, in the case (i), a redefinition of the parameter
governing the evolution leads to a Fokker-Planck equation similar to the one
obtained when the perturbation is taken from a standard Gaussian ensemble (with
invariant measure). This equivalence can therefore help us to obtain the
correlations for various physically-significant cases modeled by generalized
Gaussian ensembles by using the already known correlations for standard
Gaussian ensembles.
For large -values, our results for both cases (i) and (ii) are similar to
those obtained for Wigner-Dyson gas as well as for the perturbation taken from
a standard Gaussian ensemble. This seems to suggest the independence of
evolution, in thermodynamic limit, from the nature of perturbation involved as
well as the initial conditions and therefore universality of dynamics of the
eigenvalues of complex systems.Comment: 11 Pages, Latex Fil
Transport Properties of a One-Dimensional Two-Component Quantum Liquid with Hyperbolic Interactions
We present an investigation of the sinh-cosh (SC) interaction model with
twisted boundary conditions. We argue that, when unlike particles repel, the SC
model may be usefully viewed as a Heisenberg-Ising fluid with moving
Heisenberg-Ising spins. We derive the Luttinger liquid relation for the
stiffness and the susceptibility, both from conformal arguments, and directly
from the integral equations. Finally, we investigate the opening and closing of
the ground state gaps for both SC and Heisenberg-Ising models, as the
interaction strength is varied.Comment: 10 REVTeX pages + 4 uuencoded figures, UoU-002029
The Recurrent Nature of Central Starbursts
New hydrodynamic models with feedback show that feedback driven turbulence
and subsequent relaxation can drive recurrent starbursts, though most of these
bursts fizzle due to premature, asymmetric ignition. Strong bursts are
terminated when the turbulence inflates the multiphase central disk. The period
between bursts is about twice a free-fall time onto the central disk. Transient
spirals and bars are common through the burst cycle.Comment: 7 pages + 3 figs. Conf. paper for "Starbursts: from 30 Doradus to
Lyman Break Galaxies," held at Inst. of Astronomy, Cambridge Univ., Sept.
6-10, 2004. Kluwer Academic Publishers, eds. R. de Grijs and R. M. Gonzalez
Delgado + additional materia
Supersymmetry, Shape Invariance and Solvability of and Calogero-Sutherland Model
Using the ideas of supersymmetry and shape invariance we re-derive the
spectrum of the and Calogero-Sutherland model. We briefly
discuss as to how to obtain the corresponding eigenfunctions. We also discuss
the difficulties involved in extending this approach to the trigonometric
models.Comment: 15 pages, REVTeX,No figure
Long Range Interaction Models and Yangian Symmetry
The generalized Sutherland-Romer models and Yan models with internal spin
degrees are formulated in terms of the Polychronakos' approach and RTT relation
associated to the Yang-Baxter equation in consistent way. The Yangian symmetry
is shown to generate both models. We finally introduce the reflection algebra
K(u) to the long range models.Comment: 13 pages, preprint of Nankai Institute of Mathematics ( Theoretical
Physics Division ), published in Physical Review E of 1995. For hard copy,
write to Prof. Mo-lin GE directly. Do not send emails to this accoun
- …