11,687 research outputs found

    Resolving the electron temperature discrepancies in HII Regions and Planetary Nebulae: kappa-distributed electrons

    Get PDF
    The measurement of electron temperatures and metallicities in H ii regions and Planetary Nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What it worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H ii regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a "kappa-distribution" for the electron energies. Such distributions are widely found in Solar System plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H ii regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from Hii regions and PNe it appears that kappa ~ 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.Comment: 16 pages, 11 figures, 2 tables, published in Ap

    Properties of the Nearly Free Electron Superconductor Ag5Pb2O6 Inferred from Fermi Surface Measurements

    Full text link
    We measured the Fermi surface of the recently discovered superconductor Ag5Pb2O6 via a de Haas-van Alphen rotation study. Two frequency branches were observed and identified with the neck and belly orbits of a very simple, nearly free electron Fermi surface. We use the observed Fermi surface geometry to quantitatively deduce superconducting properties such as the in-plane and out-of-plane penetration depths, the coherence length in the clean limit, and the critical field; as well as normal state properties such as the specific heat and the resistivity anisotropy.Comment: 2 pages, 1 figure, submitted to Physica C (M2S Proceedings

    Eisenstein Series and String Thresholds

    Get PDF
    We investigate the relevance of Eisenstein series for representing certain G(Z)G(Z)-invariant string theory amplitudes which receive corrections from BPS states only. G(Z)G(Z) may stand for any of the mapping class, T-duality and U-duality groups Sl(d,Z)Sl(d,Z), SO(d,d,Z)SO(d,d,Z) or Ed+1(d+1)(Z)E_{d+1(d+1)}(Z) respectively. Using G(Z)G(Z)-invariant mass formulae, we construct invariant modular functions on the symmetric space K\G(R)K\backslash G(R) of non-compact type, with KK the maximal compact subgroup of G(R)G(R), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincar\'e upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and gg-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4R^4 and R4H4g4R^4 H^{4g-4} couplings in toroidal compactifications of M-theory to any dimension D4D\geq 4 and D6D\geq 6 respectively.Comment: Latex2e, 60 pages; v2: Appendix A.4 extended, 2 refs added, thms renumbered, plus minor corrections; v3: relation (1.7) to math Eis series clarified, eq (3.3) and minor typos corrected, final version to appear in Comm. Math. Phys; v4: misprints and Eq C.13,C.24 corrected, see note adde

    On a Matrix Model of Level Structure

    Get PDF
    We generalize the dimensionally reduced Yang-Mills matrix model by adding d=1 Chern-Simons term and terms for a bosonic vector. The coefficient, \kappa of the Chern-Simons term must be integer, and hence the level structure. We show at the bottom of the Yang-Mills potential, the low energy limit, only the linear motion is allowed for D0 particles. Namely all the particles align themselves on a single straight line subject to \kappa^2/r^2 repulsive potential from each other. We argue the relevant brane configuration to be D0-branes in a D4 after \kappa of D8's pass the system.Comment: 1+6 pages, No figure, LaTeX; Minor changes; To appear in Class. Quant. Gra

    Spectral flow in the supersymmetric tt-JJ model with a 1/r21/r^2 interaction

    Full text link
    The spectral flow in the supersymmetric {\it t-J} model with 1/r21/r^2 interaction is studied by analyzing the exact spectrum with twisted boundary conditions. The spectral flows for the charge and spin sectors are shown to nicely fit in with the motif picture in the asymptotic Bethe ansatz. Although fractional exclusion statistics for the spin sector clearly shows up in the period of the spectral flow at half filling, such a property is generally hidden once any number of holes are doped, because the commensurability condition in the motif is not met in the metallic phase.Comment: 8 pages, revtex, Phys. Rev. B54 (1996) August 15, in pres

    Solutions to the Multi-Component 1/R Hubbard Model

    Full text link
    In this work we introduce one dimensional multi-component Hubbard model of 1/r hopping and U on-site energy. The wavefunctions, the spectrum and the thermodynamics are studied for this model in the strong interaction limit U=U=\infty. In this limit, the system is a special example of SU(N)SU(N) Luttinger liquids, exhibiting spin-charge separation in the full Hilbert space. Speculations on the physical properties of the model at finite on-site energy are also discussed.Comment: 9 pages, revtex, Princeton-May1

    Properties of Hot Stars in the Wolf-Rayet galaxy NGC5253 from ISO Spectroscopy

    Get PDF
    ISO-SWS spectroscopy of the WR galaxy NGC5253 is presented, and analysed to provide estimates of its hot young star population. Our approach differs from previous investigations in that we are able to distinguish between the regions in which different infrared fine-structure lines form, using complementary ground-based observations. The high excitation nebular [SIV] emission is formed in a very compact region, which we attribute to the central super-star-nucleus, and lower excitation [NeII] nebular emission originates in the galactic core. We use photo-ionization modelling coupled with the latest theoretical O-star flux distributions to derive effective stellar temperatures and ionization parameters of Teff>38kK, logQ=8.25 for the compact nucleus, with Teff=35kK, logQ<8 for the larger core. Results are supported by more sophisticated calculations using evolutionary synthesis models. We assess the contribution that Wolf-Rayet stars may make to highly ionized nebular lines (e.g. [OIV]). From our Br(alpha) flux, the 2" nucleus contains the equivalent of approximately 1000 O7V star equivalents and the starburst there is 2-3Myr old; the 20" core contains about 2500 O7V star equivalents, with a representative age of 5Myr. The Lyman ionizing flux of the nucleus is equivalent to the 30 Doradus region. These quantities are in good agreement with the observed mid-IR dust luminosity of 7.8x10^8 L(sun) Since this structure of hot clusters embedded in cooler emission may be common in dwarf starbursts, observing a galaxy solely with a large aperture may result in confusion. Neglecting the spatial distribution of nebular emission in NGC5253, implies `global' stellar temperatures (or ages) of 36kK (4.8Myr) and 39kK (2.9 or 4.4Myr) from the observed [NeIII/II] and [SIV/III] line ratios, assuming logQ=8.Comment: 16 pages, 7 figures, uses mn.sty, to appear in MNRA

    Human Cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against NK cell cytotoxicity.

    Get PDF
    The activating receptor, NKG2D, is expressed on a variety of immune effector cells and recognizes divergent families of major histocompatibility complex (MHC) class I-related ligands, including the MIC and ULBP proteins. Infection, stress, or transformation can induce NKG2D ligand expression, resulting in effector cell activation and killing of the ligand-expressing target cell. The human cytomegalovirus (HCMV) membrane glycoprotein, UL16, binds to three of the five known ligands for human NKG2D. UL16 is retained in the endoplasmic reticulum and cis-Golgi apparatus of cells and causes MICB to be similarly retained and stabilized within cells. Coexpression of UL16 markedly reduces cell surface levels of MICB, ULBP1, and ULBP2, and decreases susceptibility to natural killer cell-mediated cytotoxicity. Domain swapping experiments demonstrate that the transmembrane and cytoplasmic domains of UL16 are important for intracellular retention of UL16, whereas the ectodomain of UL16 participates in down-regulation of NKG2D ligands. The intracellular sequestration of NKG2D ligands by UL16 represents a novel HCMV immune evasion mechanism to add to the well-documented viral strategies directed against antigen presentation by classical MHC molecules
    corecore