3 research outputs found

    Survey Analysis of Cloned SIM Card

    No full text

    Optimization of microwave-assisted extraction of bioactive polyphenolic compounds from Marsilea quadrifolia L. using RSM and ANFIS modelling

    Get PDF
    Extraction of bioactive compounds, rich in plant secondary metabolites as a form of polyphenolic compounds has gained utmost important in the food and pharmaceutical industries due to their antioxidant properties. Microwave-assisted extraction (MAE) was utilized for maximum extraction of bioactive polyphenolic compounds from Marsilea quadrifolia L. with consuming less toxic solvent. A central composite rotatable design (CCRD) based on response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS) were followed to design and optimize the experimental parameters to get highest yield of bioactive polyphenolic compounds from M. quadrifolia L. The quantitative effects of experimental parameters such as methanol concentration (X1), microwave power (X2), irradiation temperature (X3) and irradiation time (X4) were investigated to obtain the maximum yields of total phenolic (TPC), total flavonoid contents (TFC) and antioxidant properties. The optimum conditions were observed at methanol concentration (X1= 87.5 %), microwave power (X2= 25 %), irradiation temperature (X3= 60 ºC) and irradiation time (X4= 15 min). Under these conditions, the highest yields of TPC (y1)= 693.28 mg gallic acid equivalents (GAE)/g), TFC (y2)= 84.86 mg rutin equivalents (RU)/g), % DPPHsc (y3)= 81.06 %, %ABTSsc (y4)= 71.34% and FRAP (y5)= 68.09 μg mol (Fe (II)/g) has been attained. Further, the experimental results were highly acknowledged with predicted values of RSM and ANFIS. The analysis of LC-ESI-MS spectrum confirmed 6 major bioactive compounds, namely, Betasitosterol, Tridecyliodide, 2,3,7,8 tetracholorodibenzofuaran, Chlorogenic acid, Pentachlorophenylacetate and Triacontyl hexacosanoate in the optimized extract of M. quadrifolia L. The optimized extract can be used as an alternative of synthetic antioxidants for product manufacturing in food and pharmaceutical industries

    Aphrodisiac Performance of Bioactive Compounds from Mimosa pudica Linn.: In Silico Molecular Docking and Dynamics Simulation Approach

    No full text
    Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5–ligand complexes. Four bioactive molecules (Bufadienolide (−12.30 kcal mol−1), Stigmasterol (−11.40 kcal mol−1), Isovitexin (−11.20 kcal mol−1), and Apigetrin (−11.20 kcal mol−1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (−9.80 kcal mol−1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED
    corecore