36 research outputs found

    Inhibitory effects of fucoidan on NMDA receptors and l-type Ca2+ channels regulating the Ca2+ responses in rat neurons

    Full text link
    Context: Fucoidan, a sulphated polysaccharide extracted from brown algae [Fucus vesiculosus Linn. (Fucaceae)], has multiple biological activities. Objective: The effects of fucoidan on Ca2+ responses of rat neurons and its probable mechanisms with focus on glutamate receptors were examined. Materials and methods: The neurons isolated from the cortex and hippocampi of Wistar rats in postnatal day 1 were employed. The intracellular Ca2+ responses triggered by various stimuli were measured in vitro by Fura-2/AM. Fucoidan at 0.5 mg/mL or 1.5 mg/mL was applied for 3 min to determine its effects on Ca2+ responses. RT-PCR was used to determine the mRNA expression of neuron receptors treated with fucoidan at 0.5 mg/mL for 3 h. Results: The Ca2+ responses induced by NMDA were 100% suppressed by fucoidan, and those induced by Bay K8644 90% in the cortical neurons. However, fucoidan has no significant effect on the Ca2+ responses of cortical neurons induced by AMPA or quisqualate. Meanwhile, the Ca2+ responses of hippocampal neurons induced by glutamate, ACPD or adrenaline, showed only a slight decrease following fucoidan treatment. RT-PCR assays of cortical and hippocampal neurons showed that fucoidan treatment significantly decreased the mRNA expression of NMDA-NR1 receptor and the primer pair for l-type Ca2+ channels, PR1/PR2. Discussion and conclusions: Our data indicate that fucoidan suppresses the intracellular Ca2+ responses by selectively inhibiting NMDA receptors in cortical neurons and l-type Ca2+ channels in hippocampal neurons. A wide spectrum of fucoidan binding to cell membrane may be useful for designing a general purpose drug in future

    Water secretion associated with exocytosis in endocrine cells revealed by micro forcemetry and evanescent wave microscopy.

    Get PDF
    It has been a long belief that release of substances from the cell to the extracellular milieu by exocytosis is completed by diffusion of the substances from secretory vesicles through the fusion pore. Involvement of any mechanical force that may be superposed on the diffusion to enhance the releasing process has not been elucidated to date. We tackled this problem in cultured bovine chromaffin cells using direct and sensitive methods: the laser-trap forcemetry and the evanescent-wave fluorescence microscopy. With a laser beam, we trapped a micro bead in the vicinity of a cell (with 1 microm of separation) and observed movements of the bead optically. Electrical stimulation of the cell induced many of rapid and transient movements of the bead in a direction away from the cell surface. Upon the same stimulation, secretory vesicles stained with a fluorescent probe, acridine orange, and excited under the evanescent field illumination, showed a flash-like response: a transient increase in fluorescence intensity associated with a diffuse cloud of brightness, followed by a complete disappearance. These mechanical and fluorescence transients indicate a directional flow of substances. Blockers of the Cl(-) channel suppressed the rates of both responses in a characteristic way but not exocytotic fusion itself. Immunocytochemical studies revealed the presence of Cl(-) and K(+) channels on the vesicle membranes. These results suggest that the externalization of hormones or transmitters upon exocytosis of vesicles is augmented by secretion of water from the vesicle membrane through the widened fusion pore, possibly modulating the rate and reach of the hormone or transmitter release and facilitating transport of the signal molecules in intercellular spaces

    Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    Full text link
    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies

    Photodynamic Treatment of Tumor with Bacteria Expressing KillerRed.

    Full text link
    Photodynamic therapy (PDT) is a cancer treatment modality in which a photosensitizing dye is administered and exposed to light to kill tumor cells via the production of reactive oxygen species (ROS). A fundamental obstacle for PDT is the low specificity for staining solid tumors with dyes. Recently, a tumor targeting system guided by anaerobic bacteria was proposed for tumor imaging and treatment. Here, we explore the feasibility of the genetically encoded photosensitizer KillerRed, which is expressed in Escherichia coli, to treat tumors. Using nitroblue tetrazolium (NBT), we detected a lengthy ROS diffusion from the bodies of KillerRed-expressing bacteria in vitro, which demonstrated the feasibility of using bacteria to eradicate cells in their surroundings. In nude mice, Escherichia coli (E. coli) expressing KillerRed (KR-E. coli) were subcutaneously injected into xenografts comprising CNE2 cells, a human nasopharyngeal carcinoma cell line, and HeLa cells, a human cervical carcinoma cell line. KR-E. coli seemed to proliferate rapidly in the tumors as observed under an imaging system. When the intensity of fluorescence increased and the fluorescent area became as large as the tumor one day after KR-E. coli injection, the KR-E. coli-bearing tumor was irradiated with an orange light (λ = 540-580 nm). In all cases, the tumors became necrotic the next day and were completely eliminated in a few days. No necrosis was observed after the irradiation of tumors injected with a vehicle solution or a vehicle carrying the E. coli without KillerRed. In successfully treated mice, no tumor recurrence was observed for more than two months. E. coli genetically engineered for KillerRed expression are highly promising for the diagnosis and treatment of tumors when the use of bacteria in patients is cleared for infection safety
    corecore