1,950 research outputs found

    Symmetric Points in the Landscape as Cosmological Attractors

    Full text link
    In the landscape, if there is to be any prospect of scientific prediction, it is crucial that there be states which are distinguished in some way. The obvious candidates are states which exhibit symmetries. Here we focus on states which exhibit discrete symmetries. Such states are rare, but one can speculate that they are cosmological attractors. We investigate the problem in model landscapes and cosmologies which capture some of the features of candidate flux landscapes. In non-supersymmetric theories we find no evidence that such states might be cosmologically favored. In supersymmetric theories, simple arguments suggest that states which exhibit RR symmetries might be. Our considerations lead us to raise questions about some popular models of eternal inflation.Comment: 27 pages, latex, minor typo correcte

    Wilson Loops as Precursors

    Get PDF
    There is substantial evidence that string theory on AdS_5 x S_5 is a holographic theory in which the number of degrees of freedom scales as the area of the boundary in Planck units. Precisely how the theory can describe bulk physics using only surface degrees of freedom is not well understood. A particularly paradoxical situation involves an event deep in the interior of the bulk space. The event must be recorded in the (Schroedinger Picture) state vector of the boundary theory long before a signal, such as a gravitational wave, can propagate from the event to the boundary. In a previous paper with Polchinski, we argued that the "precursor" operators which carry information stored in the wave during the time when it vanishes in a neighborhood of the boundary are necessarily non-local. In this paper we argue that the precursors cannot be products of local gauge invariant operators such as the energy momentum tensor. In fact gauge theories have a class of intrinsically non-local operators which cannot be built from local gauge invariant objects. These are the Wilson loops. We show that the precursors can be identified with Wilson loops whose spatial size is dictated by the UV-IR connection.Comment: 23 pages, no figure

    The SU(N) Matrix Model at Two Loops

    Full text link
    Multi-loop calculations of the effective action for the matrix model are important for carrying out tests of the conjectured relationship of the matrix model to the low energy description of M-theory. In particular, comparison with N-graviton scattering amplitudes in eleven-dimensional supergravity requires the calculation of the effective action for the matrix model with gauge group SU(N). A framework for carrying out such calculations at two loops is established in this paper. The two-loop effective action is explicitly computed for a background corresponding to the scattering of a single D0-brane from a stack of N-1 D0-branes, and the results are shown to agree with known results in the case N=2.Comment: 30 pages, 1 figure; v2 - typos corrected, references update

    Black Hole Complementarity vs. Locality

    Full text link
    The evaporation of a large mass black hole can be described throughout most of its lifetime by a low-energy effective theory defined on a suitably chosen set of smooth spacelike hypersurfaces. The conventional argument for information loss rests on the assumption that the effective theory is a local quantum field theory. We present evidence that this assumption fails in the context of string theory. The commutator of operators in light-front string theory, corresponding to certain low-energy observers on opposite sides of the event horizon, remains large even when these observers are spacelike separated by a macroscopic distance. This suggests that degrees of freedom inside a black hole should not be viewed as independent from those outside the event horizon. These nonlocal effects are only significant under extreme kinematic circumstances, such as in the high-redshift geometry of a black hole. Commutators of space-like separated operators corresponding to ordinary low-energy observers in Minkowski space are strongly suppressed in string theory.Comment: 32 pages, harvmac, 3 figure

    Testing Superstring Theories with Gravitational Waves

    Full text link
    We provide a simple transfer function that determines the effect of an early matter dominated era on the gravitational wave background and show that a large class of compactifications of superstring theory might be tested by observations of the gravitational wave background from inflation. For large enough reheating temperatures > 10^9 \GeV the test applies to all models containing at least one scalar with mass < 10^{12}\GeV that acquires a large initial oscillation amplitude after inflation and has only gravitational interaction strength, i.e., a field with the typical properties of a modulus.Comment: 5 pages 2 figures, v2: changes in presentation, refs revised, matches version in print in PR

    Number operator-annihilation operator uncertainty as an alternative of the number-phase uncertainty relation

    Full text link
    We consider a number operator-annihilation operator uncertainty as a well behaved alternative to the number-phase uncertainty relation, and examine its properties. We find a formulation in which the bound on the product of uncertainties depends on the expectation value of the particle number. Thus, while the bound is not a constant, it is a quantity that can easily be controlled in many systems. The uncertainty relation is approximately saturated by number-phase intelligent states. This allows us to define amplitude squeezing, connecting coherent states to Fock states, without a reference to a phase operator. We propose several setups for an experimental verification.Comment: 8 pages including 3 figures, revtex4; v2: typos corrected, presentation improved; v3: presentation considerably extended; v4: published versio

    D-Sitter Space: Causal Structure, Thermodynamics, and Entropy

    Full text link
    We study the entropy of concrete de Sitter flux compactifications and deformations of them containing D-brane domain walls. We determine the relevant causal and thermodynamic properties of these "D-Sitter" deformations of de Sitter spacetimes. We find a string scale correspondence point at which the entropy localized on the D-branes (and measured by probes sent from an observer in the middle of the bubble) scales the same with large flux quantum numbers as the entropy of the original de Sitter space, and at which Bousso's bound is saturated by the D-brane degrees of freedom (up to order one coefficients) for an infinite range of times. From the geometry of a static patch of D-Sitter space and from basic relations in flux compactifications, we find support for the possibility of a low energy open string description of the static patch of de Sitter space.Comment: 46 pages, harvmac big; 14 figure

    Constraints for quantum logic arising from conservation laws and field fluctuations

    Full text link
    We explore the connections between the constraints on the precision of quantum logical operations that arise from a conservation law, and those arising from quantum field fluctuations. We show that the conservation-law based constraints apply in a number of situations of experimental interest, such as Raman excitations, and atoms in free space interacting with the multimode vacuum. We also show that for these systems, and for states with a sufficiently large photon number, the conservation-law based constraint represents an ultimate limit closely related to the fluctuations in the quantum field phase.Comment: To appear in J. Opt. B: Quantum Semiclass. Opt., special issue on quantum contro

    Wrapped membranes, matrix string theory and an infinite dimensional Lie algebra

    Full text link
    We examine the algebraic structure of the matrix regularization for the wrapped membrane on R10Ă—S1R^{10}\times S^1 in the light-cone gauge. We give a concrete representation for the algebra and obtain the matrix string theory having the boundary conditions for the matrix variables corresponding to the wrapped membrane, which is referred to neither Seiberg and Sen's arguments nor string dualities. We also embed the configuration of the multi-wrapped membrane in matrix string theory.Comment: 19 pages, 1 figure, references added, minor change

    On the Bekenstein-Hawking Entropy, Non-Commutative Branes and Logarithmic Corrections

    Full text link
    We extend earlier work on the origin of the Bekenstein-Hawking entropy to higher-dimensional spacetimes. The mechanism of counting states is shown to work for all spacetimes associated with a Euclidean doublet (E1,M1)+(E2,M2)(E_1,M_1)+(E_2,M_2) of electric-magnetic dual brane pairs of type II string-theory or M-theory wrapping the spacetime's event horizon plus the complete internal compactification space. Non-Commutativity on the brane worldvolume enters the derivation of the Bekenstein-Hawking entropy in a natural way. Moreover, a logarithmic entropy correction with prefactor 1/2 is derived.Comment: 17 pages, 2 figures; refs. adde
    • …
    corecore