23 research outputs found

    Asymptotically Improved Grover's Algorithm in any Dimensional Quantum System with Novel Decomposed nn-qudit Toffoli Gate

    Full text link
    As the development of Quantum computers becomes reality, the implementation of quantum algorithms is accelerating in a great pace. Grover's algorithm in a binary quantum system is one such quantum algorithm which solves search problems with numeric speed-ups than the conventional classical computers. Further, Grover's algorithm is extended to a dd-ary quantum system for utilizing the advantage of larger state space. In qudit or dd-ary quantum system n-qudit Toffoli gate plays a significant role in the accurate implementation of Grover's algorithm. In this paper, a generalized nn-qudit Toffoli gate has been realized using qudits to attain a logarithmic depth decomposition without ancilla qudit. Further, the circuit for Grover's algorithm has been designed for any d-ary quantum system, where d >= 2, with the proposed nn-qudit Toffoli gate so as to get optimized depth as compared to state-of-the-art approaches. This technique for decomposing an n-qudit Toffoli gate requires access to higher energy levels, making the design susceptible to leakage error. Therefore, the performance of this decomposition for the unitary and erasure models of leakage noise has been studied as well

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Vitamin D3 Release from MgO Doped 3D Printed TCP Scaffolds for Bone Regeneration

    No full text
    Regenerating bone tissue in critical-sized craniofacial bone defects remains challenging and requires the implementation of innovative bone implants with early stage osteogenesis and blood vessel formation. Vitamin D3 is incorporated into MgO-doped 3D-printed scaffolds for defect-specific and patient-specific implants in low load-bearing areas. This novel bone implant also promotes early stage osteogenesis and blood vessel development. Our results show that vitamin D3-loaded MgO-doped 3D-printed scaffolds enhance osteoblast cell proliferation 1.3-fold after being cultured for 7 days. Coculture studies on osteoblasts derived from human mesenchymal stem cells (hMSCs) and osteoclasts derived from monocytes show the upregulation of genes related to osteoblastogenesis and the downregulation of RANK-L, which is essential for osteoclastogenesis. Release of vitamin D3 also inhibits osteoclast differentiation by 1.9-fold after a 21-day culture. After 6 weeks, vitamin D3 release from MgO-doped 3D-printed scaffolds enhances the new bone formation, mineralization, and angiogenic potential. The multifunctional 3D-printed scaffolds can improve early stage osteogenesis and blood vessel formation in craniofacial bone defects

    Sustainable conversion of textile industry cotton waste into P-dopped biochar for removal of dyes from textile effluent and valorisation of spent biochar into soil conditioner towards circular economy

    No full text
    Effective immobilization of industrial waste into biochar development could be one of the most promising technologies for solid waste management to achieve circular economy. In this study, post-industrial cotton textile waste (PICTW), a cellulose rich industrial waste, was subjected to slow pyrolysis to develop a surface engineered biochar through phosphoric acid impregnation. Biochar produced at 500 degrees C designated as PICTWB500 showed a maximum methylene blue number (240 mg g-1) with remarkable specific surface area of 1498 m2 g-1. FESEM, FTIR, XRD and Raman spectra analysis were performed to investigate the surface texture and functionalities developed in the biochar. Adsorption efficiency of the biochar was assessed using drimarene red, blue, violet, and black dyes as model dye pollutants in batch mode at different biochar dose, pH and contact time. The maximum monolayer adsorption capacity was obtained in the range 285-325 mg g-1 for different dyes, determined from Langmuir adsorption model. The kinetic behaviour was more favourable with the pseudo second-order model. The recycling ability of PICTWB500 was proven to be effective up to 6th cycle without compromising its adsorption efficiency significantly. This study demonstrated an excellent adsorption capability of the biochar in dye laden real textile effluent and recycling of spent biochar as a precursor of bio compost. Hence, this study established a dual win strategy for waste utilization in textile industry using a closed loop approach with substantial techno-economic feasibility that may have potential applications
    corecore