177 research outputs found

    Radiation Emission by Electrons Channeling in Bent Silicon Crystals

    Full text link
    Results of numerical simulations of electron channeling and emission spectra are reported for straight and uniformly bent silicon crystal. The projectile trajectories are computed using the newly developed module [1] of the MBN Explorer package [2,3]. The electron channeling along Si(110) crystallographic planes is studied for the projectile energy 855 MeV.Comment: 9 pages, 7 figures; submitted to European Physical Journal D. arXiv admin note: text overlap with arXiv:1307.678

    Simulation of Ultra-Relativistic Electrons and Positrons Channeling in Crystals with MBN Explorer

    Full text link
    A newly developed code, implemented as a part of the \MBNExplorer package \cite{MBN_ExplorerPaper,MBN_ExplorerSite} to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by \E=6.7 GeV and \E=855 MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data and with predictions of the Bethe-Heitler theory for the amorphous environment.Comment: 41 pages, 11 figures. Initially submitted on Dec 29, 2012 to Phys. Rev.

    Temperature and Field Dependence of the Energy Gap of MgB2/Pb planar junction

    Full text link
    We have constructed MgB2/Pb planar junctions for both temperature and field dependence studies. Our results show that the small gap is a true bulk property of MgB2 superconductor, not due to surface effects. The temperature dependence of the energy gap manifests a nearly BCS-like behavior. Analysis of the effect of magnetic field on junctions suggests that the energy gap of MgB2 depends non-linearly on the magnetic field. Moreover, MgB2 has an upper critical field of 15 T, in agreement with some reported Hc2 from transport measurements.Comment: 5 pages, 5 figures. Submitted to Phys. Rev.

    Modelling charge self-trapping in wide-gap dielectrics: Localization problem in local density functionals

    Full text link
    We discuss the adiabatic self-trapping of small polarons within the density functional theory (DFT). In particular, we carried out plane-wave pseudo-potential calculations of the triplet exciton in NaCl and found no energy minimum corresponding to the self-trapped exciton (STE) contrary to the experimental evidence and previous calculations. To explore the origin of this problem we modelled the self-trapped hole in NaCl using hybrid density functionals and an embedded cluster method. Calculations show that the stability of the self-trapped state of the hole drastically depends on the amount of the exact exchange in the density functional: at less than 30% of the Hartree-Fock exchange, only delocalized hole is stable, at 50% - both delocalized and self-trapped states are stable, while further increase of exact exchange results in only the self-trapped state being stable. We argue that the main contributions to the self-trapping energy such as the kinetic energy of the localizing charge, the chemical bond formation of the di-halogen quasi molecule, and the lattice polarization, are represented incorrectly within the Kohn-Sham (KS) based approaches.Comment: 6 figures, 1 tabl

    Dynamical chaos and power spectra in toy models of heteropolymers and proteins

    Full text link
    The dynamical chaos in Lennard-Jones toy models of heteropolymers is studied by molecular dynamics simulations. It is shown that two nearby trajectories quickly diverge from each other if the heteropolymer corresponds to a random sequence. For good folders, on the other hand, two nearby trajectories may initially move apart but eventually they come together. Thus good folders are intrinsically non-chaotic. A choice of a distance of the initial conformation from the native state affects the way in which a separation between the twin trajectories behaves in time. This observation allows one to determine the size of a folding funnel in good folders. We study the energy landscapes of the toy models by determining the power spectra and fractal characteristics of the dependence of the potential energy on time. For good folders, folding and unfolding trajectories have distinctly different correlated behaviors at low frequencies.Comment: 8 pages, 9 EPS figures, Phys. Rev. E (in press

    Magnetic Phase Diagram and Metal-Insulator Transition of NiS2-xSex

    Full text link
    Magnetic phase diagram of NiS2-xSex has been reexamined by systematic studies of electrical resistivity, uniform magnetic susceptibility and neutron diffraction using single crystals grown by a chemical transport method. The electrical resistivity and the uniform magnetic susceptibility exhibit the same feature of temperature dependence over a wide Se concentration. A distinct first order metal-insulator (M-I) transition accompanied by a volume change was observed only in the antiferromagnetic ordered phase for 0.50<x<0.59. In this region, the M-I transition makes substantial effects to the thermal evolution of staggered moments. In the paramagnetic phase, the M-I transition becomes broad; both the electrical resistivity and the uniform magnetic susceptibility exhibit a broad maximum around the temperatures on the M-I transition-line extrapolated to the paramagnetic phase.Comment: 6 pages, 8 figures, corrected EPS fil
    • …
    corecore