89 research outputs found
Implementing Bilateral Trade in a Global Landuse Model
International Relations/Trade, Land Economics/Use,
Uncertainties in climate change prediction and modelling
As models become increasingly complex and integrated, uncertainty among model  parameters, variables and processes become critical for evaluating model outcomes and  predictions. A framework for understanding uncertainty in climate modelling has been  developed by the IPCC and EEA which provides a framework for discussion of uncertainty  in models in general. Here we report on a review of this framework along with the results  of a survey of sources of uncertainty in livestock and grassland models. Along with the  identification of key sources of uncertainty in livestock and grassland modelling, the  survey highlighted the need for a development of a common typology for uncertainty.  When collaborating across traditionally separate research fields, or when communicating  with stakeholders, differences in understanding, interpretation or emphasis can cause  confusion. Further work in MACSUR should focus on improving model intercomparison  methods to better understand model uncertainties, and improve availability of high  quality datasets which can reduce model uncertainties
Recommended from our members
Characterization of land cover-specific fire regimes in the Brazilian Amazon
Humans profoundly alter fire regimes both directly, by introducing changes in fuel dynamics and ignitions, and indirectly, by increasing the release of greenhouse gases and aerosols from fires, which can alter regional climate and, as a consequence, modify fuel moisture and availability. Interactions between vegetation dynamics, regional climate change and anthropogenic pressure lead to high heterogeneity in the spatio-temporal fire distribution. We use the new FireTracks Scientific Dataset that tracks the spatio-temporal development of individual fires to analyse fire regimes in the Brazilian Legal Amazon over the period 2002â2020. We analyse fire size, duration, intensity and rate of spread in six different land-cover classes. Particular combinations of fire features determine the dominant and characteristic fire regime in each of them. We find that fires in savannas and evergreen forests burn the largest areas and are the most long lasting. Forest fires have the potential for burning at the highest intensities, whereas higher rates of spread are found in savannas. Woody savanna and grassland fires are usually affected by smaller, shorter, less-intense fires compared with fires in evergreen forest and savanna. However, fires in grasslands can burn at rates of spread as high as savanna fires as a result of the easily flammable fuel. We observe that fires in deciduous forests and croplands are generally small, short and low intense, although the latter can sustain high rates of spread due to the dry post-harvest residuals. The reconstructed fire regimes for each land cover can be used to improve the simulated fire characteristics by models and, thus, future projections
The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields â a global simulation study with LPJmL (V. 5.0-tillage-cc)
Land management practices can reduce the environmental impact of agricultural land use and production, improve productivity, and transform cropland into carbon sinks. In our study we assessed the biophysical and biogeochemical impacts and the potential contribution of cover crop practices to sustainable land use. We applied the process-based, global dynamic vegetation model LPJmL (LundâPotsdamâJena managed Land) V. 5.0-tillage-cc with a modified representation of cover crops to simulate the growth of grasses on cropland in periods between two consecutive main crops' growing seasons for near-past climate and land use conditions. We quantified simulated responses of agroecosystem components to cover crop cultivation in comparison to bare-soil fallowing practices on global cropland for a period of 50 years.
For cover crops with tillage, we obtained annual global median soil carbon sequestration rates of 0.52 and 0.48âtâCâhaâ1âyrâ1 for the first and last decades of the entire simulation period, respectively. We found that cover crops with tillage reduced annual nitrogen leaching rates from cropland soils by medians of 39â% and 54â% but also the productivity of the following main crop by an average of 1.6â% and 2â% for the 2 analyzed decades. The largest reductions in productivity were found for rice and modestly lowered ones for maize and wheat, whereas the soybean yield revealed an almost homogenously positive response to cover crop practices replacing bare-soil fallow periods. The obtained simulation results of cover crop with tillage practices exhibit a good ability of the model version to reproduce observed effects reported in other studies. Further, the results suggest that having no tillage is a suitable complementary practice to cover crops, enhancing soil carbon sequestration and the reduction in nitrogen leaching, while reducing potential trade-offs with the main-crop productivity due to their impacts on soil nitrogen and water dynamics.
The spatial heterogeneity of simulated impacts of cover crops on the variables assessed here was related to the time period since the introduction of the management practice as well as to environmental and agronomic conditions of the cropland. This study supports findings of other studies, highlighting the substantial potential contribution of cover crop practices to the sustainable development of arable production.Peer Reviewe
Recommended from our members
A novel probabilistic risk analysis to determine the vulnerability of ecosystems to extreme climatic events
We present a simple method of probabilistic risk analysis for ecosystems. The only requirements are time seriesâmodelled or measuredâof environment and ecosystem variables. Risk is defined as the product of hazard probability and ecosystem vulnerability. Vulnerability is the expected difference in ecosystem performance between years with and without hazardous conditions. We show an application to drought risk for net primary productivity of coniferous forests across Europe, for both recent and future climatic conditions
Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use
Changes in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6â
1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (屉1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (屉0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (屉1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes
Recommended from our members
Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to tillage or they ignore the effects of tillage. Hence, they do not allow for analysing the effects of tillage and cannot evaluate, for example, reduced tillage or no tillage (referred to here as âno-tillâ) practises as mitigation practices for climate change. In this paper, we describe the implementation of tillage-related practices in the global ecosystem model LPJmL. The extended model is evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analyses on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional, patterns of carbon and water fluxes. However, modelled N fluxes deviate from the literature values and need further study. The addition of the tillage module to LPJmL5 opens up opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions, and other environmental indicators
Recommended from our members
The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage
No-tillage is often suggested as a strategy to reduce greenhouse gas emissions. Modeling tillage effects on nitrous oxide (N2O) emissions is challenging and subject to great uncertainties as the processes producing the emissions are complex and strongly nonlinear. Previous findings have shown deviations between the LPJmL5.0-tillage model (LPJmL: LundâPotsdamâJena managed Land) and results from meta-analysis on global estimates of tillage effects on N2O emissions. Here we tested LPJmL5.0-tillage at four different experimental sites across Europe and the USA to verify whether deviations in N2O emissions under different tillage regimes result from a lack of detailed information on agricultural management, the representation of soil water dynamics or both. Model results were compared to observational data and outputs from field-scale DayCent model simulations. DayCent has been successfully applied for the simulation of N2O emissions and provides a richer database for comparison than noncontinuous measurements at experimental sites. We found that adding information on agricultural management improved the simulation of tillage effects on N2O emissions in LPJmL. We also found that LPJmL overestimated N2O emissions and the effects of no-tillage on N2O emissions, whereas DayCent tended to underestimate the emissions of no-tillage treatments. LPJmL showed a general bias to overestimate soil moisture content. Modifications of hydraulic properties in LPJmL in order to match properties assumed in DayCent, as well as of the parameters related to residue cover, improved the overall simulation of soil water and N2O emissions simulated under tillage and no-tillage separately. However, the effects of no-tillage (shifting from tillage to no-tillage) did not improve. Advancing the current state of information on agricultural management and improvements in soil moisture highlights the potential to improve LPJmL5.0-tillage and global estimates of tillage effects on N2O emissions
Projecting grassland sensitivity to climate change from an ensemble of models
The grassland biome covers about one-quarter of the earthâs land area and contributes to the livelihoods of ca. 800 million people. Increased aridity and persistent droughts are projected in the twenty-first century for most of Africa, southern Europe and the Middle East, most of the Americas, Australia and South East Asia. A number of these regions have a large fraction of their land use covered by grasslands and rangelands. Grasslands are the ecosystems that respond most rapidly to precipitation variability. However, global projections of climate change impacts on grasslands are still lacking in the scientific literature. Within AgMIP, based on the C3MP protocol initially developed for crops, we have explored the sensitivity of temperate grasslands to climate change drivers with an ensemble of models. Site calibrated models are used to provide projections under probabilistic climate change scenarios, which are defined by a combination of air temperature, precipitation and atmospheric CO2 changes resulting in 99 runs for each model times site combination. This design provides a test of grassland production, GHG (N2O and CH4) emissions and soil carbon sensitivity to climate change drivers. This integrated approach has been tested for 12 grassland simulation models applied to 19 sites over three continents. We show here that a single polynomial emulator can be fitted with high significance to the results of all models and sites, when these are expressed as relative changes from the optimal combination of climate drivers. This polynomial emulator shows that elevated atmospheric CO2 expands the thermal and hydric range which allows for the development of temperate grasslands. Moreover, we calculate the climatic response surface of GHG emissions per unit grassland production and we show that this surface varies with elevated CO2. From these results we provide first estimates of the impacts of climate change on temperate grasslands based on a range of climate scenarios
- âŠ