74 research outputs found
Consideration of patient preferences and challenges in storage and access of pharmacogenetic test results
Pharmacogenetic (PGx) testing is one of the primary drivers of personalized medicine. The use of PGx testing may provide a lifetime of benefits through tailoring drug dosing and selection of multiple medications to improve therapeutic outcomes and reduce adverse responses. We aimed to assess public interest and concerns regarding sharing and storage of PGx test results that would facilitate the re-use of PGx data across a lifetime of care
Developing patient-friendly genetic and genomic test reports: formats to promote patient engagement and understanding
10.1186/s13073-014-0058-6Genome Medicine675
Public attitudes toward ancillary information revealed by pharmacogenetic testing under limited information conditions
Pharmacogenetic (PGx) testing can inform drug dosing and selection by aiding in estimating a patient’s genetic risk of adverse response and/or failure to respond. Some PGx tests may generate ancillary clinical information unrelated to the drug treatment question for which testing is done – an informational “side effect.” We aimed to assess public interest and concerns about PGx tests and ancillary information
Development of Competency-based Online Genomic Medicine Training (COGENT)
The fields of genetics and genomics have greatly expanded across medicine through the development of new technologies that have revealed genetic contributions to a wide array of traits and diseases. Thus, the development of widely available educational resources for all healthcare providers is essential to ensure the timely and appropriate utilization of genetics and genomics patient care. In 2020, the National Human Genome Research Institute released a call for new proposals to develop accessible, sustainable online education for health providers. This paper describes the efforts of the six teams awarded to reach the goal of providing genetic and genomic training modules that are broadly available for busy clinicians
Assessment of the current status of real-world pharmacogenomic testing: informed consent, patient education, and related practices
Introduction: The practice of informed consent (IC) for pharmacogenomic testing in clinical settings varies, and there is currently no consensus on which elements of IC to provide to patients. This study aims to assess current IC practices for pharmacogenomic testing.Methods: An online survey was developed and sent to health providers at institutions that offer clinical germline pharmacogenomic testing to assess current IC practices.Results: Forty-six completed surveys representing 43 clinical institutions offering pharmacogenomic testing were received. Thirty-two (74%) respondents obtain IC from patients with variability in elements incorporated. Results revealed that twenty-nine (67%) institutions discuss the benefits, description, and purpose of pharmacogenomic testing with patients. Less commonly discussed elements included methodology and accuracy of testing, and laboratory storage of samples.Discussion: IC practices varied widely among survey respondents. Most respondents desire the establishment of consensus IC recommendations from a trusted pharmacogenomics organization to help address these disparities
Effect of genetic testing for risk of type 2 diabetes mellitus on health behaviors and outcomes: study rationale, development and design
<p>Abstract</p> <p>Background</p> <p>Type 2 diabetes is a prevalent chronic condition globally that results in extensive morbidity, decreased quality of life, and increased health services utilization. Lifestyle changes can prevent the development of diabetes, but require patient engagement. Genetic risk testing might represent a new tool to increase patients' motivation for lifestyle changes. Here we describe the rationale, development, and design of a randomized controlled trial (RCT) assessing the clinical and personal utility of incorporating type 2 diabetes genetic risk testing into comprehensive diabetes risk assessments performed in a primary care setting.</p> <p>Methods/Design</p> <p>Patients are recruited in the laboratory waiting areas of two primary care clinics and enrolled into one of three study arms. Those interested in genetic risk testing are randomized to receive <it>either </it>a standard risk assessment (SRA) for type 2 diabetes incorporating conventional risk factors plus upfront disclosure of the results of genetic risk testing ("SRA+G" arm), <it>or </it>the SRA alone ("SRA" arm). Participants not interested in genetic risk testing will not receive the test, but will receive SRA (forming a third, "no-test" arm). Risk counseling is provided by clinic staff (not study staff external to the clinic). Fasting plasma glucose, insulin levels, body mass index (BMI), and waist circumference are measured at baseline and 12 months, as are patients' self-reported behavioral and emotional responses to diabetes risk information. Primary outcomes are changes in insulin resistance and BMI after 12 months; secondary outcomes include changes in diet patterns, physical activity, waist circumference, and perceived risk of developing diabetes.</p> <p>Discussion</p> <p>The utility, feasibility, and efficacy of providing patients with genetic risk information for common chronic diseases in primary care remain unknown. The study described here will help to establish whether providing type 2 diabetes genetic risk information in a primary care setting can help improve patients' clinical outcomes, risk perceptions, and/or their engagement in healthy behavior change. In addition, study design features such as the use of existing clinic personnel for risk counseling could inform the future development and implementation of care models for the use of individual genetic risk information in primary care.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00849563">NCT00849563</a></p
- …