88 research outputs found

    Conflicting results of prenatal FISH with different probes for Down's Syndrome critical regions associated with mosaicism for a de novo del(21)(q22) characterised by molecular karyotyping: Case report

    Get PDF
    For the rapid detection of common aneuploidies either PCR or Fluorescence in situ hybridisation (FISH) on uncultured amniotic fluid cells are widely used. There are different commercial suppliers providing FISH assays for the detection of trisomies affecting the Down's syndrome critical regions (DSCR) in 21q22. We present a case in which rapid FISH screening with different commercial probes for the DSCR yielded conflicting results. Chromosome analysis revealed a deletion of one chromosome 21 in q22 which explained the findings. Prenatally an additional small supernumerary marker chromosome (sSMC) was discovered as well, which could not be characterised. Postnatal chromosome analysis in lymphocytes of the infant revealed complex mosaicism with four cell lines. By arrayCGH the sSMC was provisionally described as derivative chromosome 21 which was confirmed by targeted FISH experiments

    Multiplex ligation-dependent probe amplification analysis of the NR0B1(DAX1) locus enables explanation of phenotypic differences in patients with X-linked congenital adrenal hypoplasia

    Get PDF
    BACKGROUND/AIM:X-linked adrenal hypoplasia congenita (AHC) is a rare disorder characterized by primary adrenal insufficiency and hypogonadic hypogonadism. It is caused by deletions or point mutations of the NR0B1 gene, on Xp21. AHC can be associated with glycerol kinase deficiency, Duchenne muscular dystrophy and mental retardation (MR), as part of a contiguous gene deletion syndrome. A synthetic probe set for multiplex ligation-dependent probe amplification analysis was developed to confirm and characterize NR0B1 deletions in patients with AHC and to correlate their genotypes with their divergent phenotypes. RESULTS:In 2 patients, isolated AHC was confirmed, while a patient at risk for metabolic crisis was revealed as the deletion extends to the GK gene. A deletion extending to IL1RAPL1 was confirmed in both patients showing MR. Thus, a good genotype-phenotype correlation was confirmed. CONCLUSIONS:Multiplex ligation-dependent probe amplification analysis is a valuable tool to detect NR0B1 and contiguous gene deletions in patients with AHC. It is especially helpful for IL1RAPL1 deletion detection as no clinical markers for MR are available. Furthermore, multiplex ligation-dependent probe amplification has the advantage to identify female carriers that, depending on the deletion extension, have a high risk of giving birth to children with MR, AHC, glycerol kinase deficiency and Duchenne muscular dystrophy

    T‐cell prolymphocytic leukemia is associated with deregulation of oncogenic microRNAs on transcriptional and epigenetic level

    Get PDF
    Deregulation of micro(mi)-RNAs is a common mechanism in tumorigenesis. We investigated the expression of 2083 miRNAs in T-cell prolymphocytic leukemia (T-PLL). Compared to physiologic CD4+ and CD8+ T-cell subsets, 111 miRNAs were differentially expressed in T-PLL. Of these, 33 belonged to miRNA gene clusters linked to cancer. Genomic variants affecting miRNAs were infrequent with the notable exception of copy number aberrations. Remarkably, we found strong upregulation of the miR-200c/-141 cluster in T-PLL to be associated with DNA hypomethylation and active promoter marks. Our findings suggest that copy number aberrations and epigenetic changes could contribute to miRNA deregulation in T-PLL

    Mantle cell lymphomas with concomitant MYC and CCND1 breakpoints are recurrently TdT positive and frequently show high-grade pathological and genetic features

    Get PDF
    Chromosomal breakpoints involving the MYC gene locus, frequently referred to as MYC rearrangements (MYC - R+), are a diagnostic hallmark of Burkitt lymphoma and recurrent in many other subtypes of B-cell lymphomas including follicular lymphoma, diffuse large B-cell lymphoma and other high-grade B-cell lymphomas and are associated with an aggressive clinical course. In remarkable contrast, in MCL, only few MYC - R+ cases have yet been described. In the current study, we have retrospectively analysed 16 samples (MYC - R+, n = 15, MYC - R-, n = 1) from 13 patients and describe their morphological, immunophenotypic and (molecular) genetic features and clonal evolution patterns. Thirteen out of fifteen MYC - R+ samples showed a non-classical cytology including pleomorphic (centroblastic, immunoblastic), anaplastic or blastoid. MYC translocation partners were IG-loci in 4/11 and non-IG loci in 7/11 analysed cases. The involved IG-loci included IGH in 3 cases and IGL in one case. PAX5 was the non-IG partner in 2/7 patients. The MYC - R+ MCL reported herein frequently displayed characteristics associated with an aggressive clinical course including high genomic-complexity (6/7 samples), frequent deletions involving the CDKN2A locus (7/10 samples), high Ki-67 proliferation index (12/13 samples) and frequent P53 expression (13/13 samples). Of note, in 4/14 samples, SOX11 was not or only focally expressed and 3/13 samples showed focal or diffuse TdT-positivity presenting a diagnostic challenge as these features could point to a differential diagnosis of diffuse large B-cell lymphoma and/or lymphoblastic lymphoma/leukaemia

    ATRT–SHH comprises three molecular subgroups with characteristic clinical and histopathological features and prognostic significance

    Get PDF
    Atypical teratoid/rhabdoid tumor (ATRT) is an aggressive central nervous system tumor characterized by loss of SMARCB1/INI1 protein expression and comprises three distinct molecular groups, ATRT–TYR, ATRT–MYC and ATRT–SHH. ATRT–SHH represents the largest molecular group and is heterogeneous with regard to age, tumor location and epigenetic profile. We, therefore, aimed to investigate if heterogeneity within ATRT–SHH might also have biological and clinical importance. Consensus clustering of DNA methylation profiles and confirmatory t-SNE analysis of 65 ATRT–SHH yielded three robust molecular subgroups, i.e., SHH-1A, SHH-1B and SHH-2. These subgroups differed by median age of onset (SHH-1A: 18 months, SHH-1B: 107 months, SHH-2: 13 months) and tumor location (SHH-1A: 88% supratentorial; SHH-1B: 85% supratentorial; SHH-2: 93% infratentorial, often extending to the pineal region). Subgroups showed comparable SMARCB1 mutational profiles, but pathogenic/likely pathogenic SMARCB1 germline variants were over-represented in SHH-2 (63%) as compared to SHH-1A (20%) and SHH-1B (0%). Protein expression of proneural marker ASCL1 (enriched in SHH-1B) and glial markers OLIG2 and GFAP (absent in SHH-2) as well as global mRNA expression patterns differed, but all subgroups were characterized by overexpression of SHH as well as Notch pathway members. In a Drosophila model, knockdown of Snr1 (the fly homologue of SMARCB1) in hedgehog activated cells not only altered hedgehog signaling, but also caused aberrant Notch signaling and formation of tumor-like structures. Finally, on survival analysis, molecular subgroup and age of onset (but not ASCL1 staining status) were independently associated with overall survival, older patients (> 3 years) harboring SHH-1B experiencing relatively favorable outcome. In conclusion, ATRT–SHH comprises three subgroups characterized by SHH and Notch pathway activation, but divergent molecular and clinical features. Our data suggest that molecular subgrouping of ATRT–SHH has prognostic relevance and might aid to stratify patients within future clinical trials. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00401-022-02424-5

    Focal structural variants revealed by whole genome sequencing disrupt the histone demethylase KDM4C in B cell lymphomas

    Get PDF
    Histone methylation-modifiers, like EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%) also identified by prior exome or RNAseq studies, we here unravel KDM4C in chromosome 9p24, encoding a histone demethylase, to be recurrently altered. Focal structural variation was the main mechanism of KDM4C alterations, which was independent from 9p24 amplification. We identified KDM4C alterations also in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNAseq and genome sequencing data we predict KDM4C structural variants to result in loss-of-function. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas
    corecore