4 research outputs found
Evaluation of the Difference in the Content of Essential and Non-Essential Elements in Wild Boar and Swine Tissues Sampled in the Same Area of Northern Italy
This study aimed to investigate the exposure of wild boars and swine from semi-extensive farms in the same area to essential and non-essential elements, measuring their concentration in liver and muscle. Furthermore, the study explored the influence of factors such as sex, age, and the sampling location on wild boars. Higher liver element concentrations were observed in both wild boars and swine. Geographical comparisons revealed minor differences. Young wild boars showed significantly higher Cu, Se, Cd, and Cr levels, while older subjects exhibited elevated Mn levels, reflecting age-related element absorption variations. No significant sex-based variations were noted. Comparing wild boars to swine, wild boars had more non-essential elements due to their foraging behavior and a larger home range. Conversely, swine exhibited a greater prevalence of essential elements, potentially resulting from dietary supplementation
Skeletal muscle insulin resistance and adipose tissue hypertrophy persist beyond the reshaping of gut microbiota in young rats fed a fructose-rich diet
: To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood