160 research outputs found
T-lineage acute lymphoblastic leukemia (T-ALL)
Review on T-lineage acute lymphoblastic leukemia (T-ALL), with data on clinics, and the genes involved
p27KIP1 Deletions in Childhood Acute Lymphoblastic Leukemia
AbstractThe p27KIP1 gene, which encodes a cyclin-dependent kinase (CDK) inhibitor, has been assigned to chromosome band 12p12, a region often affected by cytogenetically apparent deletions or translocations in childhood acute lymphoblastic leukemia (ALL). As described here, fluorescence in situ hybridization (FISH) analysis of 35 primary ALL samples with cytogenetic evidence of 12p abnormalities revealed hemizygous deletions of p27KIP1 in 29 cases. Further analysis of 19 of these cases with two additional gene-specific probes from the 12p region (hematopoietic cell phosphatase, HCP and cyclin D2, CCND2) showed that p27KIP1 is located more proximally on the short arm of chromosome 12 and is deleted more frequently than either HCP or CCND2. Of 16 of these cases with hemizygous deletion of p27KIP1, only eight showed loss of HCP or CCND2, whereas loss of either of the latter two loci was uniformly associated with loss of p27KIP1. Missense mutations or mutations leading to premature termination codons were not detected in the coding sequences of the retained p27KIP1 alleles in any of the 16 ALL cases examined, indicating a lack of homozygous inactivation. By Southern blot analysis, one case of primary T-cell ALL had hemizygous loss of a single p27KIP1 allele and a 34.5-kb deletion, including the second coding exon of the other allele. Despite homozygous inactivation of p27KIP1 in this case, our data suggest that haploinsufficiency for p27KIP1 is the primary consequence of 12p chromosomal deletions in childhood ALL. The oncogenic role of reduced, but not absent, levels of p27KIP1 is supported by recent studies in murine models and evidence that this protein not only inhibits the activity of complexes containing CDK2 and cyclin E, but also promotes the assembly and catalytic activity of CDK4 or CDK6 in complexes with cyclin D
Unbalanced chromosome 1 abnormalities leading to partial trisomy 1q in four infants with Down syndrome and acute megakaryocytic leukemia
<p>Abstract</p> <p>Background</p> <p>Children with Down syndrome (DS) have an increased risk of childhood acute leukemia, especially acute megakaryoblastic leukemia (AMKL) also called acute myeloid leukemia (AML) type M7. Here four yet unreported infants with such malignancies are reported.</p> <p>Results</p> <p>An unbalanced translocation involving chromosome 1 was identified by GTG banding in all cases. These were characterized in more detail by molecular cytogenetic approaches. Additional molecular analysis revealed in three of the four cases mutations in exon 2 of the GATA binding protein 1 (globin transcription factor 1), located in Xp11.23.</p> <p>Conclusion</p> <p>Our results corroborate that abnormalities of chromosome 1 are common in DS-associated AMKL. Whether this chromosomal region contains gene(s) involved in hematopoietic malignant transformation remains to be determined.</p
γδ
Gamma delta (γδ) T-cell antigen receptor (TCR) expression and its related T-cell differentiation are not commonly reported in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL). Here we report two pediatric T-ALL cases and present their clinical features, histology, immunophenotypes, cytogenetics, and molecular diagnostic findings. The first patient is a two-year-old girl with leukocytosis, circulating lymphoblasts, and a cryptic insertion of a short-arm segment at 10p12 into the long-arm segment of 11q23 resulting in an MLL and AF10 fusion transcript, which may be the first reported in γδ T-ALL. She responded to the chemotherapy protocol poorly and had persistent diseases. Following an allogeneic bone marrow transplant, she went into remission. The second patient is an eleven-year-old boy with a normal white cell count, circulating blasts, and a normal karyotype, but without any immature cellular markers by flow cytometric analysis. He responded to the chemotherapy well and achieved a complete remission. These cases demonstrate the diverse phenotypic, cytogenetic, and molecular aspects of γδ T-ALL. Early T-precursor- (ETP-) ALL and their differential diagnosis from other mature γδ T-cell leukemia/lymphomas are also discussed
Prognostic impact of t(16;21)(p11;q22) and t(16;21)(q24;q22) in pediatric AML: A retrospective study by the I-BFM study group
To study the prognostic relevance of rare genetic aberrations in acute myeloid leukemia (AML), such as t(16:21), international collaboration is required. Two different types of t(16:21) translocations can be distinguished: t(16:21)(p11;q22), resulting in the FUS-ERG fusion gene; and t(16:21)(q24;q22), resulting in RUNX1-core binding factor (CBFA2T3). We collected data on clinical and biological characteristics of 54 pediatric AML cases with t(16:21) rearrangements from 14 international collaborative study groups participating in the international Berlin-Frankfurt-Miinster (I-BFM) AML study group. The AML-BFM cohort diagnosed between 1997 and 2013 was used as a reference cohort. RUNX1-CBFA2T3 (n = 23) had significantly lower median white blood cell count (12.5 x 10(9)/L, P = .03) compared with the reference cohort. FUS-ERG rearranged AML (n = 31) had no predominant French-American-British (FAB) type, whereas 76% of RUNX1-CBFA2T3 had an M1/M2 FAB type (M1, M2), significantly different from the reference cohort (P = .004). Four-year event-free survival (EFS) of patients with FUS-ERG was 7% (standard error [SE] = 5%), significantly lower compared with the reference cohort (51%, SE = 1%, P < .001). Four-year EFS of RUNX1-CBFA2T3 was 77% (SE = 8%, P = .06), significantly higher compared with the reference cohort. Cumulative incidence of relapse was 74% (SE = 8%) in FUS-ERG, 0% (SE = 0%) in RUNX1-CBFA2T3, compared with 32% (SE = 1%) in the reference cohort (P < .001). Multivariate analysis identified both FUS-ERG and RUNX1-CBFA2T3 as independent risk factors with hazard ratios of 1.9 (P < .0001) and 0.3 (P = .025), respectively. These results describe 2 clinically relevant distinct subtypes of pediatric AML. Similarly to other core-binding factor AMLs, patients with RUNX1-CBFA2T3 rearranged AML may benefit from stratification in the standard risk treatment, whereas patients with FUS-ERG rearranged AML should be considered high-risk
Phenotype in combination with genotype improves outcome prediction in acute myeloid leukemia: a report from Children’s Oncology Group protocol AAML0531
Diagnostic biomarkers can be used to determine relapse risk in acute myeloid leukemia, and certain genetic aberrancies have prognostic relevance. A diagnostic immunophenotypic expression profile, which quantifies the amounts of distinct gene products, not just their presence or absence, was established in order to improve outcome prediction for patients with acute myeloid leukemia. The immunophenotypic expression profile, which defines each patient’s leukemia as a location in 15-dimensional space, was generated for 769 patients enrolled in the Children’s Oncology Group AAML0531 protocol. Unsupervised hierarchical clustering grouped patients with similar immunophenotypic expression profiles into eleven patient cohorts, demonstrating high associations among phenotype, genotype, morphology, and outcome. Of 95 patients with inv(16), 79% segregated in Cluster A. Of 109 patients with t(8;21), 92% segregated in Clusters A and B. Of 152 patients with 11q23 alterations, 78% segregated in Clusters D, E, F, G, or H. For both inv(16) and 11q23 abnormalities, differential phenotypic expression identified patient groups with different survival characteristics (
- …