3,025 research outputs found

    Organizations as Communities: Creating Worksite Campaigns to Promote Organ Donation

    Get PDF
    Organizations as Communities: Creating Worksite Campaigns to Promote Organ Donatio

    Training Programs for Improving Communication about Medical Research and Clinical Trials: A Systematic Review

    Get PDF
    Objectives: The aim of this article is to provide recommendations on the structure, materials, and outcomes that should be adopted for communication training programs designed to improve clinical trial education for patients

    Tryptophan 207 is Crucial to the Unique Properties of the Human Voltage-gated Proton Channel, hHV1

    Get PDF
    Part of the “signature sequence” that defines the voltage-gated proton channel (HV1) is a tryptophan residue adjacent to the second Arg in the S4 transmembrane helix: RxWRxxR, which is perfectly conserved in all high confidence HV1 genes. Replacing Trp207 in human HV1 (hHV1) with Ala, Ser, or Phe facilitated gating, accelerating channel opening by 100-fold, and closing by 30-fold. Mutant channels opened at more negative voltages than wild-type (WT) channels, indicating that in WT channels, Trp favors a closed state. The Arrhenius activation energy, Ea, for channel opening decreased to 22 kcal/mol from 30–38 kcal/mol for WT, confirming that Trp207 establishes the major energy barrier between closed and open hHV1. Cation–π interaction between Trp207 and Arg211 evidently latches the channel closed. Trp207 mutants lost proton selectivity at pHo \u3e8.0. Finally, gating that depends on the transmembrane pH gradient (ΔpH-dependent gating), a universal feature of HV1 that is essential to its biological functions, was compromised. In the WT hHV1, ΔpH-dependent gating is shown to saturate above pHi or pHo 8, consistent with a single pH sensor with alternating access to internal and external solutions. However, saturation occurred independently of ΔpH, indicating the existence of distinct internal and external pH sensors. In Trp207 mutants, ΔpH-dependent gating saturated at lower pHo but not at lower pHi. That Trp207 mutation selectively alters pHo sensing further supports the existence of distinct internal and external pH sensors. Analogous mutations in HV1 from the unicellular species Karlodinium veneficum and Emiliania huxleyi produced generally similar consequences. Saturation of ΔpH-dependent gating occurred at the same pHo and pHi in HV1 of all three species, suggesting that the same or similar group(s) is involved in pH sensing. Therefore, Trp enables four characteristic properties: slow channel opening, highly temperature-dependent gating kinetics, proton selectivity, and ΔpH-dependent gating

    Entertainment (mis)education: The framing of organ donation in entertainment television

    Get PDF
    Researchers and practitioners who have sought to understand public reluctance to donating organs in spite of favorable attitudes toward organ donation have long thought that belief in myths about donation contribute to the problem. How these myths emerged and more important, why they have persisted in spite of national education campaigns is not clear. In the absence of direct personal experience with organ donation or transplantation, we believe that most people receive their information about donation through the media. In this study, we identify all entertainment television shows with organ donation storylines or subplots broadcast on ABC, NBC, CBS, and FOX from [2004][2005]. Frame analysis reveals 2 competing metaframes: the moral corruption of the powerful and organ donors are good people. In addition to the metaframes, 4 secondary frames, and 6 tertiary frames are identified. Organ donation is framed in mostly negative terms, with a few notable exceptions. Recommendations for how to address negative framing of organ donation in the media are offered. Choosing what frame phenomena are to be placed in may do more to determine their meaning than lengthy discussions of the facts of or arguments toward them

    Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1

    Get PDF
    We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis, HtHV1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtHV1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pHi). The H+ conductance (gH)-V relationship in the voltage-gated proton channel (HV1) from other species shifts 40 mV when either pHi or pHo (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of HV1 in many species and in numerous human tissues. The HtHV1 channel exhibits normal pHo dependence but anomalously weak pHi dependence. In this study, we show that a single point mutation in human hHV1—changing His168 to Gln168, the corresponding residue in HtHV1—compromises the pHi dependence of gating in the human channel so that it recapitulates the HtHV1 response. This location was previously identified as a contributor to the rapid gating kinetics of HV1 in Strongylocentrotus purpuratus. His168 mutation in human HV1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pHo dependence, but changing pHi shifts the gH-V relationship on average by /unit. Thus, His168 is critical to pHi sensing in hHV1. His168, located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in HV1 that significantly impairs pH sensing when mutated. Because pHo dependence remains intact, the selective erosion of pHi dependence supports the idea that there are distinct internal and external pH sensors. Although His168 may itself be a pHi sensor, the converse mutation, Q229H, does not normalize the pHi sensitivity of the HtHV1 channel. We hypothesize that the imidazole group of His168 interacts with nearby Phe165 or other parts of hHV1 to transduce pHi into shifts of voltage-dependent gating

    Brain Trust: Students for Students: VCU to RPS Mentorship Program

    Get PDF
    As a public, urban research institution, Virginia Commonwealth University embraces the importance of developing university-community partnerships that generate innovative solutions to societal challenges and prepare engaged citizens of tomorrow. The Students for Students: VCU to RPS Mentorship Program provides a model that will connect current VCU students to current Richmond Public Schools (RPS) students through a formal, multi-year mentorship. The ultimate goal of this program is to support and positively influence RPS students, while providing current VCU students with an opportunity to give back to the community while developing their mentorship skills. The mentoring relationship will seek to motivate RPS sophomores, juniors and seniors to improve school performance, graduate on time, and craft a post-high school path

    Exotic Properties of a Voltage-gated Proton Channel from the Snail Helisoma trivolvis

    Get PDF
    Voltage-gated proton channels, HV1, were first reported in Helix aspersa snail neurons. These H+ channels open very rapidly, two to three orders of magnitude faster than mammalian HV1. Here we identify an HV1 gene in the snail Helisoma trivolvis and verify protein level expression by Western blotting of H. trivolvis brain lysate. Expressed in mammalian cells, HtHV1 currents in most respects resemble those described in other snails, including rapid activation, 476 times faster than hHV1 (human) at pHo 7, between 50 and 90 mV. In contrast to most HV1, activation of HtHV1 is exponential, suggesting first-order kinetics. However, the large gating charge of ∌5.5 e0 suggests that HtHV1 functions as a dimer, evidently with highly cooperative gating. HtHV1 opening is exquisitely sensitive to pHo, whereas closing is nearly independent of pHo. Zn2+ and Cd2+ inhibit HtHV1 currents in the micromolar range, slowing activation, shifting the proton conductance–voltage (gH-V) relationship to more positive potentials, and lowering the maximum conductance. This is consistent with HtHV1 possessing three of the four amino acids that coordinate Zn2+ in mammalian HV1. All known HV1 exhibit ΔpH-dependent gating that results in a 40-mV shift of the gH-V relationship for a unit change in either pHo or pHi. This property is crucial for all the functions of HV1 in many species and numerous human cells. The HtHV1 channel exhibits normal or supernormal pHo dependence, but weak pHi dependence. Under favorable conditions, this might result in the HtHV1 channel conducting inward currents and perhaps mediating a proton action potential. The anomalous ΔpH-dependent gating of HtHV1 channels suggests a structural basis for this important property, which is further explored in this issue (Cherny et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201711968)

    Assessing Communication Practice during Clinical Trial Recruitment and Consent: The Clinical Trial Communication Inventory (CTCI)

    Get PDF
    The development and evaluation of training programs with the potential to improve informed consent and accrual to clinical trials depend heavily on the ability to measure outcomes of these trainings. In this chapter, we present the development of an instrument, the clinical trial communication inventory (CTCI). Data were collected from 87 clinical research professionals at three academic medical centers, which were analyzed using factor analytic methods and reliability testing procedures. This testing resulted in eight subscales representing verbal, nonverbal, and privacy protection behaviors. While the final CTCI instrument would benefit from further validity testing, it represents a resource that can be used to evaluate future trainings of research professionals

    Characterization and functional analysis of seven flagellin genes in Rhizobium leguminosarum bv. viciae. Characterization of R. leguminosarum flagellins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhizobium leguminosarum </it>bv. <it>viciae </it>establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera <it>Vicia, Lathyrus, Pisum </it>and <it>Lens</it>. Motility and chemotaxis are important in the ecology of <it>R. leguminosarum </it>to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum.</p> <p>Results</p> <p><it>R. leguminosarum </it>strains 3841 and VF39SM have seven flagellin genes (<it>flaA</it>, <it>flaB, flaC, flaD, flaE, flaH</it>, and <it>flaG</it>), which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. <it>flaA, flaB, flaC</it>, and <it>flaD </it>are in tandem array and are located in the main flagellar gene cluster. <it>flaH </it>and <it>flaG </it>are located outside of the flagellar/motility region while <it>flaE </it>is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG) are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C) and five flagellins (FlaA/B/C/E/G) were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of <it>flaA </it>resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of <it>flaB </it>and <it>flaC </it>resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in <it>flaD, flaE, flaH</it>, and <it>flaG </it>were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains with mutations in <it>flaD </it>and <it>flaG </it>were not significantly affected while <it>flaE </it>and <it>flaH </it>mutants exhibited shortened filaments and reduced swimming motility.</p> <p>Conclusion</p> <p>The results obtained from this study demonstrate that FlaA, FlaB, and FlaC are major components of the flagellar filament while FlaD and FlaG are minor components for <it>R. leguminosarum </it>strains 3841 and VF39SM. We also observed differences between the two strains, wherein FlaE and FlaH appear to be minor components of the flagellar filaments in VF39SM but these flagellin subunits may play more important roles in 3841. This paper also demonstrates that the flagellins of 3841 and VF39SM are possibly glycosylated.</p
    • 

    corecore