234 research outputs found

    A non-perturbative study of non-commutative U(1) gauge theory

    Full text link
    We study U(1) gauge theory on a 4d non-commutative torus, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d=2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter theta, which provides evidence for a possible continuum theory. In the weak coupling symmetric phase, the dispersion relation involves a negative IR-singular term, which is responsible for the observed phase transition.Comment: 7 pages, 4 figures, Talk presented by J. Nishimura at the 21st Nishinomiya-Yukawa Memorial Symposium on Theoretical Physics: ``Noncommutative Geometry and Quantum Spacetime in Physics'', Nishinomiya and Kyoto (2006

    Modulation Doping of a Mott Quantum Well by a Proximate Polar Discontinuity

    Full text link
    We present evidence for hole injection into LaAlO3/LaVO3/LaAlO3 quantum wells near a polar surface of LaAlO3 (001). As the surface is brought in proximity to the LaVO3 layer, an exponential drop in resistance and a decreasing positive Seebeck coefficient is observed below a characteristic coupling length of 10-15 unit cells. We attribute this behavior to a crossover from an atomic reconstruction of the AlO2-terminated LaAlO3 surface to an electronic reconstruction of the vanadium valence. These results suggest a general approach to tunable hole-doping in oxide thin film heterostructures.Comment: 16 pages, 7 figure

    Temperature Dependent Polarity Reversal in Au/Nb:SrTiO3 Schottky Junctions

    Full text link
    We have observed temperature-dependent reversal of the rectifying polarity in Au/Nb:SrTiO3 Schottky junctions. By simulating current-voltage characteristics we have found that the permittivity of SrTiO3 near the interface exhibits temperature dependence opposite to that observed in the bulk, significantly reducing the barrier width. At low temperature, tunneling current dominates the junction transport due both to such barrier narrowing and to suppressed thermal excitations. The present results demonstrate that novel junction properties can be induced by the interface permittivity

    Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy

    Full text link
    We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type" interfaces, Ti3+ signals appeared, which were absent for insulating "p-type" interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO3 thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness

    Negative Differential Resistance Induced by Mn Substitution at SrRuO3/Nb:SrTiO3 Schottky Interfaces

    Full text link
    We observed a strong modulation in the current-voltage characteristics of SrRuO3_3/Nb:SrTiO3_3 Schottky junctions by Mn substitution in SrRuO3_3, which induces a metal-insulator transition in bulk. The temperature dependence of the junction ideality factor indicates an increased spatial inhomogeneity of the interface potential with substitution. Furthermore, negative differential resistance was observed at low temperatures, indicating the formation of a resonant state by Mn substitution. By spatially varying the position of the Mn dopants across the interface with single unit cell control, we can isolate the origin of this resonant state to the interface SrRuO3_3 layer. These results demonstrate a conceptually different approach to controlling interface states by utilizing the highly sensitive response of conducting perovskites to impurities

    Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4

    Full text link
    Electrons at interfaces, driven to minimize their free energy, are distributed differently than in bulk. This can be dramatic at interfaces involving heterovalent compounds. Here we profile an abrupt interface between V 3d2 LaVO3 and V 3d0 LaVO4 using electron energy loss spectroscopy. Although no bulk phase of LaVOx with a V 3d1 configuration exists, we find a nanometer-wide region of V 3d1 at the LaVO3/LaVO4 interface, rather than a mixture of V 3d0 and V 3d2. The two-dimensional sheet of 3d1 electrons is a prototypical electronic reconstruction at an interface between competing ground states.Comment: 14 pages, 5 figure

    Polar Discontinuity Doping of the LaVO_3/SrTiO_3 Interface

    Full text link
    We have investigated the transport properties of LaVO_3/SrTiO_3 Mott insulator/band insulator heterointerfaces for various configurations. The (001)-oriented n-type VO_2/LaO/TiO_2 polar discontinuity is conducting, exhibiting a LaVO_3 thickness-dependent metal-insulator transition and low temperature anomalous Hall effect. The (001) p-type VO_2/SrO/TiO_2 interface, formed by inserting a single layer of bulk metallic SrVO_3 or SrO, drives the interface insulating. The (110) heterointerface is also insulating, indicating interface conduction arising from electronic reconstructions.Comment: 18 pages, 5 figure

    Electronic structure of the Mott insulator LaVO3 in a quantum well geometry

    Full text link
    We used x-ray photoemission spectroscopy to investigate the electronic structure of the Mott insulator LaVO3 embedded in LaAlO3. By limiting the upper layer of LaAlO3 to 3 unit cells, the underlying LaVO3 could be probed. The V 2p core-level spectra had both V3+ and V4+ components, and above 2 unit cell thick LaVO3, the structures exhibited spectra similar to bulk samples. The atomically flat surfaces enabled study of the emission angle dependence, which indicates the V4+ is localized to the topmost layer. These results demonstrate the potential for probing interface electronic structure in oxide ultrathin films by surface spectroscopy.Comment: 11 pages, 4 figure
    • …
    corecore