8 research outputs found

    Quantifying the Classification of Exoplanets: in Search for the Right Habitability Metric

    Full text link
    What is habitability? Can we quantify it? What do we mean under the term habitable or potentially habitable planet? With estimates of the number of planets in our Galaxy alone running into billions, possibly a number greater than the number of stars, it is high time to start characterizing them, sorting them into classes/types just like stars, to better understand their formation paths, their properties and, ultimately, their ability to beget or sustain life. After all, we do have life thriving on one of these billions of planets, why not on others? Which planets are better suited for life and which ones are definitely not worth spending expensive telescope time on? We need to find sort of quick assessment score, a metric, using which we can make a list of promising planets and dedicate our efforts to them. Exoplanetary habitability is a transdisciplinary subject integrating astrophysics, astrobiology, planetary science, even terrestrial environmental sciences. We review the existing metrics of habitability and the new classification schemes of extrasolar planets and provide an exposition of the use of computational intelligence techniques to evaluate habitability scores and to automate the process of classification of exoplanets. We examine how solving convex optimization techniques, as in computing new metrics such as CDHS and CEESA, cross-validates ML-based classification of exoplanets. Despite the recent criticism of exoplanetary habitability ranking, this field has to continue and evolve to use all available machinery of astroinformatics, artificial intelligence and machine learning. It might actually develop into a sort of same scale as stellar types in astronomy, to be used as a quick tool of screening exoplanets in important characteristics in search for potentially habitable planets for detailed follow-up targets.Comment: 17 pages, 6 figures, in pres

    Flexible numerical optimization with ensmallen

    Full text link
    This report provides an introduction to the ensmallen numerical optimization library, as well as a deep dive into the technical details of how it works. The library provides a fast and flexible C++ framework for mathematical optimization of arbitrary user-supplied functions. A large set of pre-built optimizers is provided, including many variants of Stochastic Gradient Descent and Quasi-Newton optimizers. Several types of objective functions are supported, including differentiable, separable, constrained, and categorical objective functions. Implementation of a new optimizer requires only one method, while a new objective function requires typically only one or two C++ methods. Through internal use of C++ template metaprogramming, ensmallen provides support for arbitrary user-supplied callbacks and automatic inference of unsupplied methods without any runtime overhead. Empirical comparisons show that ensmallen outperforms other optimization frameworks (such as Julia and SciPy), sometimes by large margins. The library is available at https://ensmallen.org and is distributed under the permissive BSD license.Comment: https://ensmallen.org

    Habitability classification of exoplanets: a machine learning insight

    No full text
    We explore the efficacy of machine learning (ML) in characterizing exoplanets into different classes. The source of the data used in this work is University of Puerto Rico’s Planetary Habitability Laboratory’s Exoplanets Catalog (PHL-EC). We perform a detailed analysis of the structure of the data and propose methods that can be used to effectively categorize new exoplanet samples. Our contributions are twofold. We elaborate on the results obtained by using ML algorithms by stating the accuracy of each method used and propose a paradigm to automate the task of exoplanet classification for relevant outcomes. In particular, we focus on the results obtained by novel neural network architectures for the classification task, as they have performed very well despite complexities that are inherent to this problem. The exploration led to the development of new methods fundamental and relevant to the context of the problem and beyond. The data exploration and experimentation also result in the development of a general data methodology and a set of best practices which can be used for exploratory data analysis experiments
    corecore