4 research outputs found

    Molybdenum Disulfide-Based Photocatalysis:Bulk-to-Single Layer Structure and Related Photomechansim for Environmental Applications

    Get PDF
    Bulk-to-single layer molybdenum disulfide (MoS2) is widely used as a robust candidate for photodegradation of organic pollutants, hydrogen production, and CO2 reduction. This material features active edge sites and narrow band gap features, which are useful for generating reactive species in aqueous suspensions. However, the high-charge carrier recombination, photocorrosion, unstable sulfide state, and formation of Mo-S-O links during photocatalytic reactions limit its applicability. Thus, research has focused on improving the performance of MoS2 by tailoring its bulk-to-single layer structure and combining it with other semiconductor materials to improve the photocatalytic performance. Different strategies have been successfully applied to enhance the photocatalytic activity of MoS2, including tailoring of the surface morphology, formation of heterojunctions with other semiconductors, doping, and modification with excess sulfur or carbon nanostructures. This review describes the influence of starting precursors, sulfur sources, and synthetic methods to obtain heterostructured morphologies and study their impact on the photocatalytic efficiency. Finally, the relevance of crystal facets and defects in photocatalysis is outlined. Future applications of MoS2 with tailoring and tuning physicochemical properties are highlighted

    Enhanced Sunlight-Powered Photocatalysis and Methanol Oxidation Activities of Co<sub>3</sub>O<sub>4</sub>-Embedded Polymeric Carbon Nitride Nanostructures

    No full text
    The contamination of water by organic substances poses a significant global challenge. To address these pressing environmental and energy concerns, this study emphasizes the importance of developing effective photocatalysts powered by sunlight. In this research, we achieved the successful synthesis of a novel photocatalyst comprised of polymeric carbon nitride (CN) nanosheets embedded with Co3O4 material, denoted as CN-CO. The synthesis process involved subjecting the mixture to 500 °C for 10 h in a muffle furnace. Structural and morphological analyses confirmed the formation of CN-CO nanostructures, which exhibited remarkable enhancements in photocatalytic activity for the removal of methylene blue (MB) pollutants under replicated sunlight. After 90 min of exposure, the degradation rate reached an impressive 98.9%, surpassing the degradation rates of 62.3% for pure CN and 89.32% for pure Co3O4 during the same time period. This significant improvement can be attributed to the exceptional light captivation capabilities and efficient charge separation abilities of the CN-CO nanostructures. Furthermore, the CN-CO nanostructures demonstrated impressive photocurrent density-time (j-t) activity under sunlight, with a photocurrent density of 2.51 μA/cm2 at 0.5 V. The CN-CO nanostructure exhibited excellent methanol oxidation reaction (MOR) activity with the highest current density of 83.71 mA/cm2 at an optimal 2 M methanol concentration, benefiting from the synergy effects of CN and CO in the nanostructure. Overall, this study presents a straightforward and effective method for producing CN-based photocatalysts decorated with semiconductor nanosized materials. The outcomes of this research shed light on the design of nanostructures for energy-related applications, while also providing insights into the development of efficient photocatalytic materials for addressing environmental challenges

    Sono-Chemical Synthesis of Silver Quantum Dots Immobilized on Exfoliated Graphitic Carbon Nitride Nanostructures Using Ginseng Extract for Photocatalytic Hydrogen Evolution, Dye Degradation, and Antimicrobial Studies

    No full text
    Due to modernization and the scarcity of fossil fuel resources, energy demand is continuously increasing. In this regard, it is essential and necessary to create a renewable energy source that can meet future energy demands. Recently, the production of H2 by water splitting and removing pollutants from the water has been essential for issues of energy and environmental demands. Herein, g-C3N4 and Ag-g-C3N4 composite structures have been successfully fabricated by the ultrasonication method. The physio/photochemical properties of prepared g-C3N4 and Ag-g-C3N4 were examined with different analytical techniques such as FTIR, XRD, UV-DRS, SEM, TEM, PL, and XPS analyses. The silver quantum dots (QDS) anchored to g-C3N4 structures performed the profound photocatalytic activities of H2 production, dye degradation, and antimicrobial activity under visible-light irradiation. The Ag/g-C3N4 composite with an Ag loading of 0.02 mole has an optimum photoactivity at 335.40 μmol g−1 h−1, which is superior to other Ag loading g-C3N4 composites. The synthesized Ag/g-C3N4 nanoparticles showed potential microbial inhibition activity during the preliminary screening, and the inhibition zones were comparable to the commercial antibiotic chloramphenicol. The loading of Ag into g-C3N4 paves the suppression, recombination and transfer of photo-generated electron-hole pairs, leading to the enhancement of hydrogen production, the diminishment of pollutants in water under visible light irradiation, and antimicrobial activity against multidrug-resistant pathogens

    ZrO2/MoS2 Heterojunction Photocatalysts for Efficient Photocatalytic Degradation of Methyl Orange

    No full text
    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)(2) or (NH4)(6)Mo7O24 center dot 4H(2)O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N-2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.ope
    corecore