28 research outputs found

    A comparison of the Benjamini-Hochberg procedure with some Bayesian rules for multiple testing

    Full text link
    In the spirit of modeling inference for microarrays as multiple testing for sparse mixtures, we present a similar approach to a simplified version of quantitative trait loci (QTL) mapping. Unlike in case of microarrays, where the number of tests usually reaches tens of thousands, the number of tests performed in scans for QTL usually does not exceed several hundreds. However, in typical cases, the sparsity pp of significant alternatives for QTL mapping is in the same range as for microarrays. For methodological interest, as well as some related applications, we also consider non-sparse mixtures. Using simulations as well as theoretical observations we study false discovery rate (FDR), power and misclassification probability for the Benjamini-Hochberg (BH) procedure and its modifications, as well as for various parametric and nonparametric Bayes and Parametric Empirical Bayes procedures. Our results confirm the observation of Genovese and Wasserman (2002) that for small p the misclassification error of BH is close to optimal in the sense of attaining the Bayes oracle. This property is shared by some of the considered Bayes testing rules, which in general perform better than BH for large or moderate pp's.Comment: Published in at http://dx.doi.org/10.1214/193940307000000158 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Consistency of a recursive estimate of mixing distributions

    Full text link
    Mixture models have received considerable attention recently and Newton [Sankhy\={a} Ser. A 64 (2002) 306--322] proposed a fast recursive algorithm for estimating a mixing distribution. We prove almost sure consistency of this recursive estimate in the weak topology under mild conditions on the family of densities being mixed. This recursive estimate depends on the data ordering and a permutation-invariant modification is proposed, which is an average of the original over permutations of the data sequence. A Rao--Blackwell argument is used to prove consistency in probability of this alternative estimate. Several simulations are presented, comparing the finite-sample performance of the recursive estimate and a Monte Carlo approximation to the permutation-invariant alternative along with that of the nonparametric maximum likelihood estimate and a nonparametric Bayes estimate.Comment: Published in at http://dx.doi.org/10.1214/08-AOS639 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian test of normality versus a Dirichlet process mixture alternative

    Full text link
    We propose a Bayesian test of normality for univariate or multivariate data against alternative nonparametric models characterized by Dirichlet process mixture distributions. The alternative models are based on the principles of embedding and predictive matching. They can be interpreted to offer random granulation of a normal distribution into a mixture of normals with mixture components occupying a smaller volume the farther they are from the distribution center. A scalar parametrization based on latent clustering is used to cover an entire spectrum of separation between the normal distributions and the alternative models. An efficient sequential importance sampler is developed to calculate Bayes factors. Simulations indicate the proposed test can detect non-normality without favoring the nonparametric alternative when normality holds.Comment: 24 pages, 5 figures, 1 tabl
    corecore