3 research outputs found

    Initial results from a realtime FRB search with the GBT

    No full text
    We present the data analysis pipeline, commissioning observations, and initial results from the GREENBURST fast radio burst (FRB) detection system on the Robert C. Byrd Green Bank Telescope (GBT) previously described by Surnis et al., which uses the 21-cm receiver observing commensally with other projects. The pipeline makes use of a state-of-the-art deep learning classifier to winnow down the very large number of false-positive single-pulse candidates that mostly result from radio frequency interference. In our observations, totalling 156.5 d so far, we have detected individual pulses from 20 known radio pulsars that provide an excellent verification of the system performance. We also demonstrate, through blind injection analyses, that our pipeline is complete down to a signal-to-noise threshold of 12. Depending on the observing mode, this translates into peak flux sensitivities in the range 0.14–0.89 Jy. Although no FRBs have been detected to date, we have used our results to update the analysis of Lawrence et al. to constrain the FRB all-sky rate to be 1150+200−180 per day above a peak flux density of 1 Jy. We also constrain the source count index α = 0.84 ± 0.06, which indicates that the source count distribution is substantially flatter than expected from a Euclidean distribution of standard candles (where α = 1.5). We discuss this result in the context of the FRB redshift and luminosity distributions. Finally, we make predictions for detection rates with GREENBURST, as well as other ongoing and planned FRB experiments

    GREENBURST: A commensal Fast Radio Burst search back-end for the Green Bank Telescope

    No full text
    We describe the design and deployment of GREENBURST, a commensal Fast Radio Burst (FRB) search system at the Green Bank Telescope. GREENBURST uses the dedicated L-band receiver tap to search over the 960−-1920 MHz frequency range for pulses with dispersion measures out to 10410^4 pc cm−3^{-3}. Due to its unique design, GREENBURST will obtain data even when the L-band receiver is not being used for scheduled observing. This makes it a sensitive single pixel detector capable of reaching deeper in the radio sky. While single pulses from Galactic pulsars and rotating radio transients will be detectable in our observations, and will form part of the database we archive, the primary goal is to detect and study FRBs. Based on recent determinations of the all-sky rate, we predict that the system will detect approximately one FRB for every 2−-3 months of continuous operation. The high sensitivity of GREENBURST means that it will also be able to probe the slope of the FRB source function, which is currently uncertain in this observing band

    Initial results from the ALFABURST survey

    No full text
    Here, we present initial results from the ALFABURST radio transient survey, which is currently running in a commensal mode with the ALFA receiver at the Arecibo telescope. We observed for a total of 1400 hours and have detected single pulses from known pulsars but did not detect any FRBs. The non-detection of FRBs is consistent with the current FRB sky rates
    corecore