1 research outputs found
Effects of exposure of rat erythrocytes to a hypogeomagnetic field
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Background:Hypomagnetic fields can disrupts the normal functioning of living organisms by a mechanism thought to involve oxidative stress. In erythrocytes, oxidative stress can inter alia lead to changes to hemoglobin content and to hemolysis. Objective:To study the effects of hypomagnetism on the state of rat erythrocytes in vitro. Methods:Rat erythrocytes were exposed to an attenuated magnetic field (AMF) or Earth’s magnetic field (EMF), in the presence of tert-butyl hydroperoxide (TBHP) as inducer of oxidative stress. Determinations: total hemoglobin (and its three forms – oxyhemoglobin, methemoglobin, and hemichrome) released from erythrocytes, spectral data (500–700 nm); oxygen radical concentrations, electron paramagnetic resonance. Results:AMF and EMF exposed erythrocytes were compared. After 4 h incubation at high TBHP concentrations (>700 μM), AMF exposed erythrocytes released significantly more (p<0.05) hemoglobin (Hb), mostly as methemoglobin (metHb). Conversely, after 24 h incubation at low TBHP concentrations (⩽350 μM), EMF exposed erythrocytes released significantly more (p<0.001) hemoglobin, with metHb as a significant proportion of the total Hb. Erythrocytes exposed to AMF generated more radicals than those exposed to the EMF. Conclusion:Under particular conditions of oxidative stress, hypomagnetic fields can disrupt the functional state of erythrocytes and promote cell death; an additive effect is implicated