2 research outputs found

    Her odours make him deaf: crossmodal modulation of olfaction and hearing in a male moth

    No full text
    All animals have to cope with sensory conflicts arising from simultaneous input of incongruent data to different sensory modalities. Nocturnal activity in moths includes mate-finding behaviour by odour detection and bat predator avoidance by acoustic detection. We studied male moths that were simultaneously exposed to female sex pheromones indicating the presence of a potential mate, and artificial bat cries simulating a predation risk. We show that stimulation of one sensory modality can modulate the response to information from another, suggesting that behavioural thresholds are dynamic and depend on the behavioural context. The tendency to respond to bat sounds decreased as the quality and/or the amount of sex pheromone increased. The behavioural threshold for artificial bat cries increased by up to 40 dB when male moths where simultaneously exposed to female sex pheromones. As a consequence, a male moth that has detected the pheromone plume from a female will not try to evade an approaching bat until the bat gets close, hence incurring increased predation risk. Our results suggest that male moths' reaction to sensory conflicts is a trade-off depending on the relative intensity of the input to CNS from the two sensory modalities

    Quantitative analysis of the effects of ultrasound from an odor sprayer on moth flight behavior

    No full text
    A piezoelectric sprayer was recently developed for precision release of odor stimuli in olfactory research. The device replaces conventional dispensers used to release semiochemicals in studies of moth flight toward odor sources. However, the device generates high-frequency sounds in the range that some moths can hear. Ultrasound from the standard set-up sprayer had a considerable impact on flight behavior of the silver Y moth, Autographa gamma, tested in a flight tunnel. It was affected at all behavioral stages when the dispenser was driven at 120 kHz. Only 5% of the moths reached the source when exposed to 120-kHz sound from the dispenser compared to 65% in the control group without sound. The proportion taking flight was also reduced. Hearing threshold curves obtained electrophysiologically revealed that moths were sensitive to the frequency range at which the sprayer was operated and that sound intensity from the sprayer was up to 40 dB above the moths' electrophysiological hearing threshold. The audiogram for A. gamma was similar to audiograms obtained for other noctuids. Hearing sensitivity was highest at around 15 kHz, where the threshold was 35 dB SPL (sound pressure level). The threshold increased with frequency up to 94 dB SPL at 160 kHz. We improved the sprayer to operate at 300 kHz, which is beyond the hearing ability of most insects with ears. At this high frequency, the moths' sensitivity to ultrasound is reduced considerably, and we did not observe any effect on flight behavior compared to a control group without sound. Accordingly, this new piezoelectric sprayer can be used with ultrasound-sensitive insects and insensitive insects alike
    corecore