6 research outputs found

    The experimental studies of operating modes of a diesel-generator set at variable speed

    Get PDF
    A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues

    Development of The Structural and Functional Design of the Laboratory Bench for Experimental Research Diesel Generator Sets on Variable Speed

    Get PDF
    A diesel generator set working at variable speed to save fuel is studied. A description is provided of a laboratory bench for conducting experimental studies of a variable speed diesel generator set. Its component parts are described, and its technical characteristics are given

    Assessment of the cogeneration biogas plant possibilities in the autonomous power supply system

    Get PDF
    The use of biomass and wood waste for heat and power production is increasing from year to year. Waste wood is low carbon footprint, has low sulfur content and relates to renewable energy sources. The paper demonstrates the possibility of increasing the energy efficiency of power supply system of the Stepanovka settlement (Tomsk region) by means of replacing diesel power plant (DPP) by the biofuel gas piston CHP. The assessment was based on the possibility of the technical and economic comparison of power supply options in the settlement

    Fuse Selection for the Two-Stage Explosive Type Switches

    Get PDF
    In the two-level explosive switch destruction of a delay happens in the form of electric explosion. Criteria of similarity of electric explosion in transformer oil are defined. The challenge of protecting the power electrical equipment from short circuit currents is still urgent, especially with the growth of unit capacity. Is required to reduce the tripping time as much as possible, and limit the amplitude of the fault current, that is very important for saving of working capacity of life-support systems. This is particularly important when operating in remote stand-alone power supply systems with a high share of renewable energy, working through the inverter transducers, as well as inverter-type diesel generators. The explosive breakers copes well with these requirements. High-speed flow of transformer oil and high pressure provides formation rate of a contact gap of 20 - 100 m/s. In these conditions there is as a rapid increase in voltage on the discontinuity, and recovery of electric strength (Ures) after current interruption

    Transformer Oil Dielectric Strength in the Contact Gap of the Explosive Arc-Extinguishing Device

    Get PDF
    The article describes the experimental results on the breakdown of the high-speed flow of transformer oil. In real conditions, the flow moves in the contact gap of a high-voltage explosive switch with speeds from 67 to 152 m /s. The geometry of the contact gap is sharply inhomogeneous and forms turbulence in the flow zone. In the arc chute medium the air inclusions pass from the dissolved state to the gaseous and the emerging bubbles enter to the electric field. Breakdown occurs, mainly through gas inclusions. In the moment, the gradient of the breakdown voltage is reduced by 91.6% compared to the static state of the oil. The experiments were carried out on the model of a high-voltage explosive switch, connected to the power circuit of the surge generator. The probing of the gap was made by a standard pulse of 1.5 / 50 [mu]s. As a result, the dependences of the gradient of the breakdown voltage on the flow rate of the transformer oil for the usual geometry of the high-voltage explosive switch contact system are constructed

    Simulators for Designing Energy-Efficient Power Supplies Based on Solar Panels

    Get PDF
    Boosted interest in highly efficient power supplies based on renewables requires involving simulators during both the designing stage and the testing one. It is especially relevant for the power supplies that operate in the harsh environmental conditions of northern territories and alike. Modern solar panels based on polycrystalline Si and GaAs possess relatively high efficiency and energy output. To save designing time and cost, system developers use simulators for the solar panels coupled with the power converters that stabilize the output parameters and ensure the proper output power quality to supply autonomous objects: namely, private houses, small-power (up to 10 kW) industrial buildings, submersible pumps, and other equipment. It is crucial for the simulator to provide a valid solar panel I-V curve in various modes and under different ambient conditions: namely, the consumed power rating, temperature, solar irradiation, etc. This paper considers a solar panel simulator topology representing one of the state-of-the-art solutions. This solution is based on principles of classical control theory involving a pulse buck converter as an object of control. A mathematical model of the converter was developed. Its realization in MATLAB/Simulink confirmed the adequacy and applicability of both discrete and continuous forms of the model during the design stage. Families of I-V curves for a commercially available solar panel within the temperature range from -40 to +25 Β°C were simulated on the model. A prototype of the designed simulator has shown its correspondence to the model in Simulink. The developed simulator allows providing a full-scale simulation of solar panels in various operating modes with the maximum value of the open circuit voltage 60 V and that of the short circuit current 60 A. Issues of statistical processing of experimental data and cognitive visualization of the obtained curves involving the cognitive graphic tool 2-simplex have also been considered within the framework of this research. The simulator designed may serve as a basis for developing a product line of energy-efficient power supplies for autonomous objects based on renewables, including those operating in northern territories
    corecore