3 research outputs found
Signal transduction network leading to COX-2 induction: A road map in search of cancer chemopreventives
Cancer is still a major global health concern even after an everlasting strive in conquering this dread disease. Emphasis is now given to chemoprevention to reduce the risk of cancer and also to improve the quality of life among cancer afflicted individuals. Recent progress in molecular biology of cancer has identified key components of the cellular signaling network, whose functional abnormality results in undesired alterations in cellular homeostasis. creating a cellular microenvironment that favors premalignant and malignant transformation. Multiple fines of, evidence suggest an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to cancer. In response to oxidative/pro-inflammatory stimuli, turning on unusual signaling arrays mediated through diverse classes of kinases and transcription factors results in aberrant expression of COX-2. Population-based as well as laboratory studies have explored a broad spectrum of chemopreventive agents including selective COX-2 inhibitors and a wide variety of, anti-inflammatory phytochemicals, which have been shown to target cellular signaling molecules as underlying mechanisms of chemoprevention. Thus, unraveling signaling pathways regulating aberrant COX-2 expression and targeted blocking of one or more components or those signal cascades may be exploited in searching chemopreventive agents in the future
Hypertonic sodium choloride and mannitol induces COX-2 via different signaling pathways in mouse cortical collecting duct M-1 cells
The kidney cortical collecting duct is an important site for the maintenance of sodium balance. Previous studies have shown that, in renal medullary cells, hypertonic stress induces expression of cyclooxygenase-2 (COX-2) via NF-kappa B activation, but little is known about COX-2 expression in response to hypertonicity in the cortical collecting duct. Therefore, we examined the mechanism of hypertonic induction of COX-2 in M-1 cells derived from mouse cortical collecting duct. Induction of COX-2 protein was detected within 6 h of treatment with hypertonic sodium chloride. The treatment also increased COX-2 mRNA accumulation in a cycloheximide-independent manner, suggesting that ongoing protein synthesis is not required for COX-2 induction. Using reporter plasmids containing 0.2-, 0.3-, and 1.5-kb fragments of the COX-2 promoter, we found that hypertonic induction of COX-2 was due to an increase in promoter activity. The COX-2-inductive effect of hypertonicity was inhibited by SB203580, indicating that the effect is mediated by p38 MAPK. Since p38 MAPK can activate NF-kappa B, we made point mutations in the NF-kappa B binding site within the COX-2 promoter. The mutations did not block the induction of COX-2 promoter activity by hypertonic sodium chloride, and hypertonic sodium chloride failed to activate NF-kappa B binding site-driven reporter gene constructs. In contrast, hypertonic mannitol activated NF-kappa B, indicating that hypertonic mannitol and hypertonic sodium chloride activate COX-2 by different mechanisms. Thus, induction of COX-2 expression in M-1 cells by hypertonic sodium chloride does not involve activation of NF-kappa B. Furthermore, the signal transduction pathways that respond to hypertonic stress vary for different osmolytes in cortical collecting duct cells. (c) 2007 Elsevier Inc. All rights reserved
2-hydroxyestradiol induces oxidative DNA damage and apoptosis in human mammary epithelial cells
Catechol estrogens, the hydroxylated metabolites of 17beta-estradiol (E), have been considered to be implicated in estrogen-induced carcinogenesis. 2-Hydroxyestradiol (2-OHE2), a major oxidized metabolite of E-2 formed preferentially by cytochrome P-450 1A1, reacts with DNA to form stable adducts and exerts genotoxicity. 2-OHE2 can be oxidized to quinone, which is accompanied by generation of reactive oxygen species (ROS). in the present study, 2-OHE2 induced strand scission in Phichi1 74 phage DNA and oxidative base modifications in calf thymus DNA in the presence of cupric ion. In cultured human mammary epithelial (MCF-10A) cells, 2-OHE2 treatment produced ROS accumulation, 8-oxo-7,8-dihydroxy-2'-deoxyguanosine formation, cytotoxicity, and disruption of mitochondrial transmembrane potential, all of which were prevented by N-acetylcysteine. These findings, taken together, suggest that 2-OHE2-induced oxidative DNA damage and apoptosis in MCF-10A cells might be mediated by ROS generated via the redox cycling of this catechol estrogen